Cell Loses Cycle Control and Becomes Cancerous

Share


A series of genetic and cellular changes contribute to a tumor becoming malignant (cancerous). The cells of malignant tumors grow in an uncontrolled way and can spread to neighboring tissues and, via lymph and blood vessels, to other parts of the body. The spread of cancer cells beyond their original site is called metastasis. Source: Urry, Lisa A.. Campbell Biology (p. 249). Pearson Education. Kindle Edition.

Campbell Biology

Cancer cells do not heed the normal signals that regulate the cell cycle. In culture, they do not stop dividing when growth factors are depleted. A logical hypothesis is that cancer cells do not need growth factors in their culture medium to grow and divide. They may make a required growth factor themselves, or they may have an abnormality in the signaling pathway that conveys the growth factor’s signal to the cell cycle control system even in the absence of that factor. Another possibility is an abnormal cell cycle control system. In these scenarios, the underlying basis of the abnormality is almost always a change in one or more genes (for example, a mutation) that alters the function of their protein products, resulting in faulty cell cycle control.

– What is a naturally occurring substance capable of stimulating cellular growth, proliferation, healing, and cellular differentiation?

There are other important differences between normal cells and cancer cells that reflect derangements of the cell cycle. If and when they stop dividing, cancer cells do so at random points in the cycle, rather than at the normal checkpoints. Moreover, cancer cells can go on dividing indefinitely in culture if they are given a continual supply of nutrients; in essence, they are “immortal.” A striking example is a cell line that has been reproducing in culture since 1951. Cells of this line are called HeLa cells because their original source was a tumor removed from a woman named Henrietta Lacks. Cells in culture that acquire the ability to divide indefinitely are said to have undergone transformation, the process that causes them to behave like cancer cells. By contrast, nearly all normal, non-transformed mammalian cells growing in culture divide only about 20 to 50 times before they stop dividing, age, and die. Finally, cancer cells evade the normal controls that trigger a cell to undergo apoptosis when something is wrong—for example, when an irreparable mistake has occurred during DNA replication preceding mitosis.

– What is an immortal cell line used in scientific research?

Source:

Urry, Lisa A.. Campbell Biology. Pearson Education. Kindle Edition. https://www.pearson.com/us/higher-education/series/Campbell-Biology-Series/2244849.html

https://en.wikipedia.org/wiki/Growth_factor

https://en.wikipedia.org/wiki/HeLa


Advertisements
Advertisements

Leave a Reply