Cotransport: Coupled Transport by a Membrane Protein

Related Posts

Cotransport: active transport driven by a concentration gradient. A carrier protein, such as this H+ /sucrose cotransporter in a plant cell (top), is able to use the diffusion of H+ down its electrochemical gradient into the cell to drive the uptake of sucrose. (The cell wall is not shown.) Although not technically part of the cotransport process, an ATP-driven proton pump is shown here (bottom), which concentrates H+ outside the cell. The resulting H+ gradient represents potential energy that can be used for active transport—of sucrose, in this case. Thus, ATP hydrolysis indirectly provides the energy necessary for cotransport. Source: Urry, Lisa A.. Campbell Biology (p. 138). Pearson Education. Kindle Edition.

Campbell Biology

A solute that exists in different concentrations across a membrane can do work as it moves across that membrane by diffusion down its concentration gradient. This is analogous to water that has been pumped uphill and performs work as it flows back down. In a mechanism called cotransport, a transport protein (a cotransporter) can couple the “downhill” diffusion of the solute to the “uphill” transport of a second substance against its own concentration gradient. For instance, a plant cell uses the gradient of H+ generated by its ATP-powered proton pumps to drive the active transport of amino acids, sugars, and several other nutrients into the cell. A cotransporter couples the return of H+ to the transport of sucrose into the cell. This protein can translocate sucrose into the cell against its concentration gradient, but only if the sucrose molecule travels in the company of an H+. The H+ uses the transport protein as an avenue to diffuse down its own electrochemical gradient, which is maintained by the proton pump. Plants use H+ /sucrose cotransport to load sucrose produced by photosynthesis into cells in the veins of leaves. The vascular tissue of the plant can then distribute the sugar to roots and other nonphotosynthetic organs that do not make their own food.

What we know about cotransport proteins in animal cells has helped us find more effective treatments for diarrhea, a serious problem in developing countries. Normally, sodium in waste is reabsorbed in the colon, maintaining constant levels in the body, but diarrhea expels waste so rapidly that reabsorption is not possible, and sodium levels fall precipitously. To treat this life-threatening condition, patients are given a solution to drink containing high concentrations of salt (NaCl) and glucose. The solutes are taken up by sodiumglucose cotransporters on the surface of intestinal cells and passed through the cells into the blood. This simple treatment has lowered infant mortality worldwide.


Urry, Lisa A.. Campbell Biology. Pearson Education. Kindle Edition.


Leave a Reply

Your email address will not be published.