The Activation Energy Barrier

Share


Energy profile of an exergonic reaction. The “molecules” are hypothetical, with A, B, C, and D representing portions of the molecules. Thermodynamically, this is an exergonic reaction, with a negative ∆G, and the reaction occurs spontaneously. However, the activation energy (EA) provides a barrier that determines the rate of the reaction.
Source: Urry, Lisa A.. Campbell Biology (p. 154). Pearson Education. Kindle Edition.

Campbell Biology

Every chemical reaction between molecules involves both bond breaking and bond forming. For example, the hydrolysis of sucrose involves breaking the bond between glucose and fructose and one of the bonds of a water molecule and then forming two new bonds. Changing one molecule into another generally involves contorting the starting molecule into a highly unstable state before the reaction can proceed. This contortion can be compared to the bending of a metal key ring when you pry it open to add a new key. The key ring is highly unstable in its opened form but returns to a stable state once the key is threaded all the way onto the ring. To reach the contorted state where bonds can change, reactant molecules must absorb energy from their surroundings. When the new bonds of the product molecules form, energy is released as heat, and the molecules return to stable shapes with lower energy than the contorted state.

The initial investment of energy for starting a reaction— the energy required to contort the reactant molecules so the bonds can break—is known as the free energy of activation, or activation energy, abbreviated EA in this book. We can think of activation energy as the amount of energy needed to push the reactants to the top of an energy barrier, or uphill, so that the “downhill” part of the reaction can begin. Activation energy is often supplied by heat in the form of thermal energy that the reactant molecules absorb from the surroundings. The absorption of thermal energy accelerates the reactant molecules, so they collide more often and more forcefully. It also agitates the atoms within the molecules, making the breakage of bonds more likely. When the molecules have absorbed enough energy for the bonds to break, the reactants are in an unstable condition known as the transition state.

The picture above graphs the energy changes for a hypothetical exergonic reaction that swaps portions of two reactant molecules:

AB + CD → AC + BD

Reactants Products The activation of the reactants is represented by the uphill portion of the graph, in which the free-energy content of the reactant molecules is increasing. At the summit, when energy equivalent to EA has been absorbed, the reactants are in the transition state: They are activated, and their bonds can be broken. As the atoms then settle into their new, more stable bonding arrangements, energy is released to the surroundings. This corresponds to the downhill part of the curve, which shows the loss of free energy by the molecules. The overall decrease in free energy means that EA is repaid with dividends, as the formation of new bonds releases more energy than was invested in the breaking of old bonds.

The reaction shown in the picture above is exergonic and occurs spontaneously. However, the activation energy provides a barrier that determines the rate of the reaction. The reactants must absorb enough energy to reach the top of the activation energy barrier before the reaction can occur. For some reactions, EA is modest enough that even at room temperature there is sufficient thermal energy for many of the reactant molecules to reach the transition state in a short time. In most cases, however, EA is so high and the transition state is reached so rarely that the reaction will hardly proceed at all. In these cases, the reaction will occur at a noticeable rate only if energy is provided, usually by heat. For example, the reaction of gasoline and oxygen is exergonic and will occur spontaneously, but energy is required for the molecules to reach the transition state and react. Only when the spark plugs fire in an automobile engine can there be the explosive release of energy that pushes the pistons. Without a spark, a mixture of gasoline hydrocarbons and oxygen will not react because the EA barrier is too high.

Source:

Urry, Lisa A.. Campbell Biology. Pearson Education. Kindle Edition. https://www.pearson.com/us/higher-education/series/Campbell-Biology-Series/2244849.html


Advertisements
Advertisements

Leave a Reply