Factors Affecting Chemical Reaction Rates

Share


Photo by Pixabay on Pexels.com

OpenStax Chemistry 2e

The rates at which reactants are consumed and products are formed during chemical reactions vary greatly. Five factors typically affecting the rates of chemical reactions will be explored in this section: the of the reacting substances, the of subdivision (one large lump versus many small particles) of the reactants, the of the reactants, the of the reactants, and the presence of a .

The chemical nature of the reacting substances:

The rate of a reaction depends on the nature of the participating substances. Reactions that appear similar may have different rates under the same conditions, depending on the identity of the reactants. For example, when small pieces of the metals iron and sodium are exposed to air, the sodium reacts completely with air overnight, whereas the iron is barely affected. The active metals calcium and sodium both react with water to form hydrogen gas and a base. Yet calcium reacts at a moderate rate, whereas sodium reacts so rapidly that the reaction is almost .

The physical states of the reactants:

A chemical reaction between two or more substances requires intimate contact between the reactants. When reactants are in different physical states, or phases (solid, liquid, gaseous, dissolved), the reaction takes place only at the between the phases. Consider the heterogeneous reaction between a solid phase and either a liquid or gaseous phase. Compared with the reaction rate for large solid particles, the rate for smaller particles will be greater because the surface area in contact with the other reactant phase is greater. For example, large pieces of iron react more slowly with acids than they do with finely divided iron powder (Figure 12.6). Large pieces of wood smolder, smaller pieces burn rapidly, and saw dust burns explosively.

Temperature of the reactants:

Chemical reactions typically occur faster at higher temperatures. Food can spoil quickly when left on the kitchen counter. However, the lower temperature inside of a refrigerator slows that process so that the same food remains fresh for days. Gas burners, hot plates, and ovens are often used in the laboratory to increase the speed of reactions that proceed slowly at ordinary temperatures. For many chemical processes, reaction rates are approximately when the temperature is raised by 10°C.

Concentrations of the reactants:

The rates of many reactions depend on the concentrations of the reactants. Rates usually increase when the concentration of one or more of the reactants increases. For example, calcium carbonate deteriorates as a result of its reaction with the pollutant . The rate of this reaction depends on the amount of sulfur dioxide in the air.

In a polluted atmosphere where the concentration of sulfur dioxide is high, calcium carbonate deteriorates more rapidly than in less polluted air. Similarly, phosphorus burns much more rapidly in an atmosphere of pure oxygen than in air, which is only about 20% oxygen.

Presence of a catalyst:

Relatively dilute aqueous solutions of hydrogen peroxide are commonly used as topical antiseptics. Hydrogen peroxide decomposes to yield .

Under typical conditions, this decomposition occurs very slowly. When dilute hydrogen peroxide is poured onto an open wound, however, the reaction occurs rapidly and the solution foams because of the vigorous production of oxygen gas. This dramatic difference is caused by the presence of substances within the wound’s exposed tissues that accelerate the decomposition process. Substances that function to increase the rate of a reaction are called catalysts.

Source:

Flowers, P., Theopold, K., Langley, R., & Robinson, W. R. (2019). Chemistry 2e. Houston, Texas: OpenStax. Accessed for free at https://openstax.org/books/chemistry-2e/pages/1-introduction


Advertisements
Advertisements

Leave a Reply