Lenses and Refraction

Related Posts:

(a) Refraction occurs when light passes from one medium, such as air, to another, such as glass, changing the direction of the light rays. (b) As shown in this diagram, light rays passing from one medium to another may be either refracted or reflected.

OpenStax Microbiology

Refraction is perhaps the most important behavior exhibited by light waves. Refraction occurs when light waves change direction as they enter a new medium. Different transparent materials transmit light at different speeds; thus, light can change speed when passing from one material to another. This change in speed usually also causes a change in direction (refraction), with the degree of change dependent on the angle of the incoming light.

The extent to which a material slows transmission speed relative to empty space is called the refractive index of that material. Large differences between the refractive indices of two materials will result in a large amount of refraction when light passes from one material to the other. For example, light moves much more slowly through water than through air, so light entering water from air can change direction greatly. We say that the water has a higher refractive index than air.

When light crosses a boundary into a material with a higher refractive index, its direction turns to be closer to perpendicular to the boundary (i.e., more toward a normal to that boundary). This is the principle behind lenses. We can think of a lens as an object with a curved boundary (or a collection of prisms) that collects all of the light that strikes it and refracts it so that it all meets at a single point called the image point (focus). A convex lens can be used to magnify because it can focus at closer range than the human eye, producing a larger image. Concave lenses and mirrors can also be used in microscopes to redirect the light path. The image below shows the focal point (the image point when light entering the lens is parallel) and the focal length (the distance to the focal point) for convex and concave lenses.

(a) A lens is like a collection of prisms, such as the one shown here. (b) When light passes through a convex lens, it is refracted toward a focal point on the other side of the lens. The focal length is the distance to the focal point. (c) Light passing through a concave lens is refracted away from a focal point in front of the lens.

Source: OpenStax Microbiology

The human eye contains a lens that enables us to see images. This lens focuses the light reflecting off of objects in front of the eye onto the surface of the retina, which is like a screen in the back of the eye. Artificial lenses placed in front of the eye (contact lenses, glasses, or microscopic lenses) focus light before it is focused (again) by the lens of the eye, manipulating the image that ends up on the retina (e.g., by making it appear larger).

Images are commonly manipulated by controlling the distances between the object, the lens, and the screen, as well as the curvature of the lens. For example, for a given amount of curvature, when an object is closer to the lens, the focal points are farther from the lens. As a result, it is often necessary to manipulate these distances to create a focused image on a screen. Similarly, more curvature creates image points closer to the lens and a larger image when the image is in focus. This property is often described in terms of the focal distance, or distance to the focal point.


Parker, N., Schneegurt, M., Thi Tu, A.-H., Forster, B. M., & Lister, P. (n.d.). Microbiology. Houston, Texas: OpenStax. Access for free at: https://openstax.org/details/books/microbiology