The Glycolysis

Related Posts:

The energy investment phase of the Embden-Meyerhof-Parnas glycolysis pathway uses two ATP molecules to phosphorylate glucose, forming two glyceraldehyde 3-phosphate (G3P) molecules. The energy payoff phase harnesses the energy in the G3P molecules, producing four ATP molecules, two NADH molecules, and two pyruvates.

Source: OpenStax Microbiology

OpenStax Microbiology

For bacteria, eukaryotes, and most archaea, glycolysis is the most common pathway for the catabolism of glucose; it produces energy, reduced electron carriers, and precursor molecules for cellular metabolism. Every living organism carries out some form of glycolysis, suggesting this mechanism is an ancient universal metabolic process. The process itself does not use oxygen; however, glycolysis can be coupled with additional metabolic processes that are either aerobic or anaerobic. Glycolysis takes place in the cytoplasm of prokaryotic and eukaryotic cells. It begins with a single six-carbon glucose molecule and ends with two molecules of a three-carbon sugar called pyruvate. Pyruvate may be broken down further after glycolysis to harness more energy through aerobic or anaerobic respiration, but many organisms, including many microbes, may be unable to respire; for these organisms, glycolysis may be their only source of generating ATP.

The type of glycolysis found in animals and that is most common in microbes is the Embden-Meyerhof-Parnas (EMP) pathway, named after Gustav Embden (1874–1933), Otto Meyerhof (1884–1951), and Jakub Parnas (1884–1949). Glycolysis using the EMP pathway consists of two distinct phases. The first part of the pathway, called the energy investment phase, uses energy from two ATP molecules to modify a glucose molecule so that the six-carbon sugar molecule can be split evenly into two phosphorylated three-carbon molecules called glyceraldehyde 3-phosphate (G3P). The second part of the pathway, called the energy payoff phase, extracts energy by oxidizing G3P to pyruvate, producing four ATP molecules and reducing two molecules of NAD+ to two molecules of NADH, using electrons that originated from glucose.

The ATP molecules produced during the energy payoff phase of glycolysis are formed by substrate-level phosphorylation, one of two mechanisms for producing ATP. In substrate-level phosphorylation, a phosphate group is removed from an organic molecule and is directly transferred to an available ADP molecule, producing ATP. During glycolysis, high-energy phosphate groups from the intermediate molecules are added to ADP to make ATP.

Overall, in this process of glycolysis, the net gain from the breakdown of a single glucose molecule is:

• two ATP molecules

• two NADH molecule, and

• two pyruvate molecules

The ATP made during glycolysis is a result of substrate-level phosphorylation. One of the two enzymatic reactions in the energy payoff phase of Embden Meyerhof-Parnas glycolysis that produce ATP in this way is shown here.

Source: OpenStax Microbiology


Parker, N., Schneegurt, M., Thi Tu, A.-H., Forster, B. M., & Lister, P. (n.d.). Microbiology. Houston, Texas: OpenStax. Access for free at: