The Oxygenic and Anoxygenic Photosynthesis

Related Posts:

Eukaryotes and cyanobacteria carry out oxygenic photosynthesis, producing oxygen, whereas other bacteria carry out anoxygenic photosynthesis, which does not produce oxygen.

Source: OpenStax Microbiology

OpenStax Microbiology

For photosynthesis to continue, the electron lost from the reaction center pigment must be replaced. The source of this electron (H2A) differentiates the oxygenic photosynthesis of plants and cyanobacteria from anoxygenic photosynthesis carried out by other types of bacterial phototrophs. In oxygenic photosynthesis, H2O is split and supplies the electron to the reaction center. Because oxygen is generated as a byproduct and is released, this type of photosynthesis is referred to as oxygenic photosynthesis. However, when other reduced compounds serve as the electron donor, oxygen is not generated; these types of photosynthesis are called anoxygenic photosynthesis. Hydrogen sulfide (H2S) or thiosulfate (S2O32-) can serve as the electron donor, generating elemental sulfur and sulfate (SO42-) ions, respectively, as a result.

Photosystems have been classified into two types: photosystem I (PSI) and photosystem II (PSII). Cyanobacteria and plant chloroplasts have both photosystems, whereas anoxygenic photosynthetic bacteria use only one of the photosystems. Both photosystems are excited by light energy simultaneously. If the cell requires both ATP and NADPH for biosynthesis, then it will carry out noncyclic photophosphorylation. Upon passing of the PSII reaction center electron to the ETS that connects PSII and PSI, the lost electron from the PSII reaction center is replaced by the splitting of water. The excited PSI reaction center electron is used to reduce NADP+ to NADPH and is replaced by the electron exiting the ETS. The flow of electrons in this way is called the Z-scheme.

If a cell’s need for ATP is significantly greater than its need for NADPH, it may bypass the production of reducing power through cyclic photophosphorylation. Only PSI is used during cyclic photophosphorylation; the high-energy electron of the PSI reaction center is passed to an ETS carrier and then ultimately returns to the oxidized PSI reaction center pigment, thereby reducing it.

(a) PSI and PSII are found on the thylakoid membrane. The high-energy electron from PSII is passed to an ETS, which generates a proton motive force for ATP synthesis by chemiosmosis, and ultimately replaces the electron lost by the PSI reaction center. The PSI reaction center electron is used to make NADPH. (b) When both ATP and NADPH are required, noncyclic photophosphorylation (in cyanobacteria and plants) provides both. The electron flow described here is referred to as the Z-scheme (shown in yellow in [a]). When the cell’s ATP needs outweigh those for NADPH, cyanobacteria and plants will use only PSI, and its reaction center electron is passed to the ETS to generate a proton motive force used for ATP synthesis.

Source: OpenStax Microbiology


Parker, N., Schneegurt, M., Thi Tu, A.-H., Forster, B. M., & Lister, P. (n.d.). Microbiology. Houston, Texas: OpenStax. Access for free at: