The Symbiotic Relationships


Related Posts


Source: OpenStax Microbiology

OpenStax Microbiology

Prokaryotic microorganisms can associate with plants and animals. Often, this association results in unique relationships between organisms. For example, bacteria living on the roots or leaves of a plant get nutrients from the plant and, in return, produce substances that protect the plant from pathogens. On the other hand, some bacteria are plant pathogens that use mechanisms of infection similar to bacterial pathogens of animals and humans.

Prokaryotes live in a community, or a group of interacting populations of organisms. A population is a group of individual organisms belonging to the same biological species and limited to a certain geographic area. Populations can have cooperative interactions, which benefit the populations, or competitive interactions, in which one population competes with another for resources. The study of these interactions between microbial populations and their environment is called microbial ecology.

Any interaction between different species that are associated with each other within a community is called symbiosis. Such interactions fall along a continuum between opposition and cooperation. Interactions in a symbiotic relationship may be beneficial or harmful, or have no effect on one or both of the species involved.

When two species benefit from each other, the symbiosis is called mutualism (or syntropy, or crossfeeding). For example, humans have a mutualistic relationship with the bacterium Bacteroides thetaiotaomicron, which lives in the intestinal tract. Bacteroides thetaiotaomicron digests complex polysaccharide plant materials that human digestive enzymes cannot break down, converting them into monosaccharides that can be absorbed by human cells. Humans also have a mutualistic relationship with certain strains of Escherichia coli, another bacterium found in the gut. E. coli relies on intestinal contents for nutrients, and humans derive certain vitamins from E. coli, particularly vitamin K, which is required for the formation of blood clotting factors. (This is only true for some strains of E. coli, however. Other strains are pathogenic and do not have a mutualistic relationship with humans.)

A type of symbiosis in which one population harms another but remains unaffected itself is called amensalism. In the case of bacteria, some amensalist species produce bactericidal substances that kill other species of bacteria. The microbiota of the skin is composed of a variety of bacterial species, including Staphylococcus epidermidis and Propionibacterium acnes. Although both species have the potential to cause infectious diseases when protective barriers are breached, they both produce a variety of antibacterial bacteriocins and bacteriocin-like compounds. S. epidermidis and P. acnes are unaffected by the bacteriocins and bacteriocin-like compounds they produce, but these compounds can target and kill other potential pathogens.

In another type of symbiosis, called commensalism, one organism benefits while the other is unaffected. This occurs when the bacterium Staphylococcus epidermidis uses the dead cells of the human skin as nutrients. Billions of these bacteria live on our skin, but in most cases (especially when our immune system is healthy), we do not react to them in any way. S. epidermidis provides an excellent example of how the classifications of symbiotic relationships are not always distinct. One could also consider the symbiotic relationship of S. epidermidis with humans as mutualism. Humans provide a food source of dead skin cells to the bacterium, and in turn the production of bacteriocin can provide an defense against potential pathogens.

If neither of the symbiotic organisms is affected in any way, we call this type of symbiosis neutralism. An example of neutralism is the coexistence of metabolically active (vegetating) bacteria and endospores (dormant, metabolically passive bacteria). For example, the bacterium Bacillus anthracis typically forms endospores in soil when conditions are unfavorable. If the soil is warmed and enriched with nutrients, some B. anthracis endospores germinate and remain in symbiosis with other species of endospores that have not germinated.

A type of symbiosis in which one organism benefits while harming the other is called parasitism. The relationship between humans and many pathogenic prokaryotes can be characterized as parasitic because these organisms invade the body, producing toxic substances or infectious diseases that cause harm. Diseases such as tetanus, diphtheria, pertussis, tuberculosis, and leprosy all arise from interactions between bacteria and humans.

Scientists have coined the term microbiome to refer to all prokaryotic and eukaryotic microorganisms that are associated with a certain organism or environment. Within the human microbiome, there are resident microbiota and transient microbiota. The resident microbiota consists of microorganisms that constantly live in or on our bodies. The term transient microbiota refers to microorganisms that are only temporarily found in the human body, and these may include pathogenic microorganisms. Hygiene and diet can alter both the resident and transient microbiota.

The resident microbiota is amazingly diverse, not only in terms of the variety of species but also in terms of the preference of different microorganisms for different areas of the human body. For example, in the human mouth, there are thousands of commensal or mutualistic species of bacteria. Some of these bacteria prefer to inhabit the surface of the tongue, whereas others prefer the internal surface of the cheeks, and yet others prefer the front or back teeth or gums. The inner surface of the cheek has the least diverse microbiota because of its exposure to oxygen. By contrast, the crypts of the tongue and the spaces between teeth are two sites with limited oxygen exposure, so these sites have more diverse microbiota, including bacteria living in the absence of oxygen (e.g., Bacteroides, Fusobacterium). Differences in the oral microbiota between randomly chosen human individuals are also significant. Studies have shown, for example, that the prevalence of such bacteria as Streptococcus, Haemophilus, Neisseria, and others was dramatically different when compared between individuals.

There are also significant differences between the microbiota of different sites of the same human body. The inner surface of the cheek has a predominance of Streptococcus, whereas in the throat, the palatine tonsil, and saliva, there are two to three times fewer Streptococcus, and several times more Fusobacterium. In the plaque removed from gums, the predominant bacteria belong to the genus Fusobacterium. However, in the intestine, both Streptococcus and Fusobacterium disappear, and the genus Bacteroides becomes predominant.

Not only can the microbiota vary from one body site to another, the microbiome can also change over time within the same individual. Humans acquire their first inoculations of normal flora during natural birth and shortly after birth. Before birth, there is a rapid increase in the population of Lactobacillus spp. in the vagina, and this population serves as the first colonization of microbiota during natural birth. After birth, additional microbes are acquired from healthcare providers, parents, other relatives, and individuals who come in contact with the baby. This process establishes a microbiome that will continue to evolve over the course of the individual’s life as new microbes colonize and are eliminated from the body. For example, it is estimated that within a 9-hour period, the microbiota of the small intestine can change so that half of the microbial inhabitants will be different. The importance of the initial Lactobacillus colonization during vaginal child birth is highlighted by studies demonstrating a higher incidence of diseases in individuals born by cesarean section, compared to those born vaginally. Studies have shown that babies born vaginally are predominantly colonized by vaginal lactobacillus, whereas babies born by cesarean section are more frequently colonized by microbes of the normal skin microbiota, including common hospital-acquired pathogens.

Throughout the body, resident microbiotas are important for human health because they occupy niches that might be otherwise taken by pathogenic microorganisms. For instance, Lactobacillus spp. are the dominant bacterial species of the normal vaginal microbiota for most women. lactobacillus produce lactic acid, contributing to the acidity of the vagina and inhibiting the growth of pathogenic yeasts. However, when the population of the resident microbiota is decreased for some reason (e.g., because of taking antibiotics), the pH of the vagina increases, making it a more favorable environment for the growth of yeasts such as Candida albicans. Antibiotic therapy can also disrupt the microbiota of the intestinal tract and respiratory tract, increasing the risk for secondary infections and/or promoting the long-term carriage and shedding of pathogens.

Source:

Parker, N., Schneegurt, M., Thi Tu, A.-H., Forster, B. M., & Lister, P. (n.d.). Microbiology. Houston, Texas: OpenStax. Access for free at: https://openstax.org/details/books/microbiology


Advertisements
Advertisements


Leave a Reply

Your email address will not be published.