The Indirect Fluorescent Antibody Techniques

Diagram of an IFA test. Antigens are bound to a surface. The patient serum is added. If the matching antibodies are present they bind to the antigen. A secondary antibody (with a fluorescent label) is added. If the patient antibodies are present the secondary antibody binds to the patient antibodies.
(a) The IFA test is used to detect antigen-specific antibodies by allowing them to bind to antigen fixed to a surface and then illuminating these complexes with a secondary antibody-fluorogen conjugate. (b) In this example of a micrograph of an indirect fluorescent antibody test, a patient’s antibodies to the measles virus bind to viral antigens present on inactivated measles-infected cells affixed to a slide. Secondary antibodies bind the patient’s antibodies and carry a fluorescent molecule. (credit b: modification of work by American Society for Microbiology)

Indirect fluorescent antibody (IFA) tests are used to look for antibodies in patient serum. For example, an IFA test for the diagnosis of syphilis uses T. pallidum cells isolated from a lab animal (the bacteria cannot be grown on lab media) and a smear prepared on a glass slide. Patient serum is spread over the smear and anti-treponemal antibodies, if present, are allowed to bind. The serum is washed off and a secondary antibody added. The secondary antibody is an antihuman immunoglobulin conjugated to a fluorogen. On examination, the T. pallidum bacteria will only be visible if they have been bound by the antibodies from the patient’s serum.

The IFA test for syphilis provides an important complement to the VDRL test. The VDRL is more likely to generate false-positive reactions than the IFA test; however, the VDRL is a better test for determining whether an infection is currently active.

IFA tests are also useful for the diagnosis of autoimmune diseases. For example, systemic lupus erythematosus (SLE) is characterized by elevated expression levels of antinuclear antibodies (ANA). These autoantibodies can be expressed against a variety of DNA-binding proteins and even against DNA itself. Because autoimmunity is often difficult to diagnose, especially early in disease progression, testing for ANA can be a valuable clue in making a diagnosis and starting appropriate treatment.

The IFA for ANA begins by fixing cells grown in culture to a glass slide and making them permeable to antibody. The slides are then incubated with serial dilutions of serum from the patient. After incubation, the slide is washed to remove unbound proteins, and the fluorescent antibody (antihuman IgG conjugated to a fluorogen) added. After an incubation and wash, the cells can be examined for fluorescence evident around the nucleus. The titer of ANA in the serum is determined by the highest dilution showing fluorescence. Because many healthy people express ANA, the American College of Rheumatology recommends that the titer must be at least 1:40 in the presence of symptoms involving two or more organ systems to be considered indicative of SLE.

Two micrographs. The diseased sample has glowing green ovals, the healthy control does not.

In this test for antinuclear antibodies (ANA), cells are exposed to serum from a patient suspected of making ANA and then to a fluorescent mAb specific for human immunoglobulin. As a control, serum from a healthy patient is also used. Visible fluorescence around the nucleus demonstrates the presence of ANA in the patient’s serum. In the healthy control where lower levels of ANA are produced, very faint green is detected. (credit left, right: modification of work by Al-Hussaini AA, Alzahrani MD, Alenizi AS, Suliman NM, Khan MA, Alharbi SA, Chentoufi AA)


Parker, N., Schneegurt, M., Thi Tu, A.-H., Forster, B. M., & Lister, P. (n.d.). Microbiology. Houston, Texas: OpenStax. Access for free at: