The Antigenic Variation in Viruses

Full skill ahead. Online video courses from $9.99

Related Posts

Antigenic drift and antigenic shift in influenza viruses. (a) In antigenic drift, mutations in the genes for the surface proteins neuraminidase and/or hemagglutinin result in small antigenic changes over time. (b) In antigenic shift, simultaneous infection of a cell with two different influenza viruses results in mixing of the genes. The resultant virus possesses a mixture of the proteins of the original viruses. Influenza pandemics can often be traced to antigenic shifts.

Source: OpenStax Microbiology

OpenStax Microbiology

Antigenic variation also occurs in certain types of enveloped viruses, including influenza viruses, which exhibit two forms of antigenic variation: antigenic drift and antigenic shift. Antigenic drift is the result of point mutations causing slight changes in the spike proteins hemagglutinin (H) and neuraminidase (N). On the other hand, antigenic shift is a major change in spike proteins due to gene reassortment. This reassortment for antigenic shift occurs typically when two different influenza viruses infect the same host.

The rate of antigenic variation in influenza viruses is very high, making it difficult for the immune system to recognize the many different strains of Influenzavirus. Although the body may develop immunity to one strain through natural exposure or vaccination, antigenic variation results in the continual emergence of new strains that the immune system will not recognize. This is the main reason that vaccines against Influenzavirus must be given annually. Each year’s influenza vaccine provides protection against the most prevalent strains for that year, but new or different strains may be more prevalent the following year.


Parker, N., Schneegurt, M., Thi Tu, A.-H., Forster, B. M., & Lister, P. (n.d.). Microbiology. Houston, Texas: OpenStax. Access for free at:


0 0 vote
Article Rating
Notify of
Inline Feedbacks
View all comments