Related Posts:

The chemical structures of amylose and amylopectin are shown. Amylose consists of unbranched chains of glucose subunits, and amylopectin consists of branched chains of glucose subunits.
Amylose and amylopectin are two different starch forms. Unbranched glucose monomer chains comprise amylose by α 1-4 glycosidic linkages. Unbranched glucose monomer chains comprise amylopectin by α 1-4 and α 1-6 glycosidic linkages. Because of the way the subunits are joined, the glucose chains have a helical structure. Glycogen (not shown) is similar in structure to amylopectin but more highly branched.

Source: OpenStax Biology 2e

OpenStax Biology 2e

A long chain of monosaccharides linked by glycosidic bonds is a polysaccharide (poly- = “many”). The chain may be branched or unbranched, and it may contain different types of monosaccharides. The molecular weight may be 100,000 daltons or more depending on the number of joined monomers. Starch, glycogen, cellulose, and chitin are primary examples of polysaccharides.

Plants store starch in the form of sugars. In plants, an amylose and amylopectic mixture (both glucose polymers) comprise these sugars. Plants are able to synthesize glucose, and they store the excess glucose, beyond their immediate energy needs, as starch in different plant parts, including roots and seeds. The starch in the seeds provides food for the embryo as it germinates and can also act as a food source for humans and animals. Enzymes break down the starch that humans consume. For example, an amylase present in saliva catalyzes, or breaks down this starch into smaller molecules, such as maltose and glucose. The cells can then absorb the glucose.

– What is an important structural component which is a polysaccharide consisting of a linear chain of several hundred to many thousands of β-linked D-glucose units of the primary cell wall of green plants?

– What is a long-chain polymer of N-acetylglucosamine that is derived from glucose which is a primary component of cell walls in fungi, the exoskeletons of arthropods, such as crustaceans and insects, the radulae of molluscs, cephalopod beaks, and the scales of fish and lissamphibians?

Glucose starch comprises monomers that are joined by α 1-4 or α 1-6 glycosidic bonds. The numbers 1-4 and 1-6 refer to the carbon number of the two residues that have joined to form the bond. The image above illustrates, unbranched glucose monomer chains (only α 1-4 linkages) form the starch; whereas, amylopectin is a branched polysaccharide (α 1-6 linkages at the branch points).

Glycogen is the storage form of glucose in humans and other vertebrates and is comprised of monomers of glucose. Glycogen is the animal equivalent of starch and is a highly branched molecule usually stored in liver and muscle cells. Whenever blood glucose levels decrease, glycogen breaks down to release glucose in a process scientists call glycogenolysis.

Cellulose is the most abundant natural biopolymer. Cellulose mostly comprises a plant’s cell wall. This provides the cell structural support. Wood and paper are mostly cellulosic in nature. Glucose monomers comprise cellulose that β 1-4 glycosidic bonds link.

– What is a multibranched polysaccharide of glucose that serves as a form of energy storage in animals, fungi, and bacteria?

The chemical structure of cellulose is shown. Cellulose consists of unbranched chains of glucose subunits.  The cellulose fibers are long, tubular, and have a slight wave shape.
In cellulose, glucose monomers are linked in unbranched chains by β 1-4 glycosidic linkages. Because of the way the glucose subunits are joined, every glucose monomer is flipped relative to the next one resulting in a linear, fibrous structure.

Source: OpenStax Biology 2e

Every other glucose monomer in cellulose is flipped over, and the monomers are packed tightly as extended long chains. This gives cellulose its rigidity and high tensile strength—which is so important to plant cells. While human digestive enzymes cannot break down the β 1-4 linkage, herbivores such as cows, koalas, and buffalos are able, with the help of the specialized flora in their stomach, to digest plant material that is rich in cellulose and use it as a food source. In some of these animals, certain species of bacteria and protists reside in the rumen (part of the herbivore’s digestive system) and secrete the enzyme cellulase. The appendix of grazing animals also contains bacteria that digest cellulose, giving it an important role in ruminants’ digestive systems. Cellulases can break down cellulose into glucose monomers that animals use as an energy source. Termites are also able to break down cellulose because of the presence of other organisms in their bodies that secrete cellulases.

Carbohydrates serve various functions in different animals. Arthropods (insects, crustaceans, and others) have an outer skeleton, the exoskeleton, which protects their internal body parts. This exoskeleton is made of the biological macromolecule chitin, which is a polysaccharide-containing nitrogen. It is made of repeating N-acetyl-β-d-glucosamine units, which are a modified sugar. Chitin is also a major component of fungal cell walls. Fungi are neither animals nor plants and form a kingdom of their own in the domain Eukarya.

Chitin-producing organisms like protozoa, fungi, arthropods, and nematodes are often pathogens in other species. Humans and other mammals have chitinase and chitinase-like proteins that can degrade chitin. They also possess several immune receptors that can recognize chitin and its degradation products in a pathogen-associated molecular pattern which initiates an immune response.

A photograph shows a bee in flight, getting nectar from a flower.
 Insects have a hard outer exoskeleton made of chitin, a type of polysaccharide. (credit: Louise Docker)


Clark, M., Douglas, M., Choi, J. Biology 2e. Houston, Texas: OpenStax. Access for free at: https://openstax.org/details/books/biology-2e