Cell Size

Related Posts:

Part a: Relative sizes on a logarithmic scale, from 0.1 n m to 1 m, are shown. Objects are shown from smallest to largest. The smallest object shown, an atom, is about 1 n m in size. The next largest objects shown are lipids and proteins; these molecules are between 1 and 10 n m. Bacteria are about 100 n m, and mitochondria are about 1 greek mu m. Plant and animal cells are both between 10 and 100 greek mu m. A human egg is between 100 greek mu m and 1 m m. A frog egg is about 1 m m, A chicken egg and an ostrich egg are both between 10 and 100 m m, but a chicken egg is larger. For comparison, a human is approximately 1 m tall.
This figure shows relative sizes of microbes on a logarithmic scale (recall that each unit of increase in a logarithmic scale represents a 10-fold increase in the quantity measured).

Source: OpenStax Biology 2e

OpenStax Biology 2e

At 0.1 to 5.0 μm in diameter, prokaryotic cells are significantly smaller than eukaryotic cells, which have diameters ranging from 10 to 100 μm. The prokaryotes’ small size allows ions and organic molecules that enter them to quickly diffuse to other parts of the cell. Similarly, any wastes produced within a prokaryotic cell can quickly diffuse. This is not the case in eukaryotic cells, which have developed different structural adaptations to enhance intracellular transport.

Small size, in general, is necessary for all cells, whether prokaryotic or eukaryotic. Let’s examine why that is so. First, we’ll consider the area and volume of a typical cell. Not all cells are spherical in shape, but most tend to approximate a sphere. You may remember from your high school geometry course that the formula for the surface area of a sphere is 4πr2, while the formula for its volume is 4πr3/3. Thus, as the radius of a cell increases, its surface area increases as the square of its radius, but its volume increases as the cube of its radius (much more rapidly). Therefore, as a cell increases in size, its surface area-to-volume ratio decreases. This same principle would apply if the cell had a cube shape. If the cell grows too large, the plasma membrane will not have sufficient surface area to support the rate of diffusion required for the increased volume. In other words, as a cell grows, it becomes less efficient. One way to become more efficient is to divide. Other ways are to increase surface area by foldings of the cell membrane, become flat or thin and elongated, or develop organelles that perform specific tasks. These adaptations lead to developing more sophisticated cells, which we call eukaryotic cells.

The smallest organisms found on Earth can be determined according to various aspects of organism size, including volume, mass, height, length, or genome size. Given the incomplete nature of scientific knowledge, it is possible that the smallest organism is undiscovered. Furthermore, there is some debate over the definition of life, and what entities qualify as organisms; consequently the smallest known organism is debatable.


Clark, M., Douglas, M., Choi, J. Biology 2e. Houston, Texas: OpenStax. Access for free at: https://openstax.org/details/books/biology-2e