Extracellular Matrix of Animal Cells


This illustration shows the plasma membrane. Embedded in the plasma membrane are integral membrane proteins called integrins. On the exterior of the cell is a vast network of collagen fibers. The fibers are attached to the integrins via a protein called fibronectin. Proteoglycan complexes also extend from the plasma membrane to the extracellular matrix. A close-up view shows that each proteoglycan complex is composed of a polysaccharide core. Proteins branch from this core, and carbohydrates branch from the proteins. The inside of the cytoplasmic membrane is lined with microfilaments of the cytoskeleton.
The extracellular matrix consists of a network of proteins and carbohydrates. Source: OpenStax Biology 2e

OpenStax Biology 2e

While cells in most multicellular organisms release materials into the extracellular space, animal cells will be discussed as an example. The primary components of these materials are proteins, and the most abundant protein is collagen. Collagen fibers are interwoven with proteoglycans, which are carbohydrate-containing protein molecules. Collectively, we call these materials the extracellular matrix. Not only does the extracellular matrix hold the cells together to form a tissue, but it also allows the cells within the tissue to communicate with each other. How can this happen?

– What is a thin, fibrous, extracellular matrix that separates the lining of an internal or external body surface from underlying connective tissue in animals?

Cells have protein receptors on their plasma membranes’ extracellular surfaces. When a molecule within the matrix binds to the receptor, it changes the receptor’s molecular structure. The receptor, in turn, changes the microfilaments’ conformation positioned just inside the plasma membrane. These conformational changes induce chemical signals inside the cell that reach the nucleus and turn “on” or “off” the transcription of specific DNA sections, which affects the associated protein production, thus changing the activities within the cell.

– What is an amorphous gel-like substance in the extracellular space that contains all components of the extracellular matrix except for fibrous materials such as collagen and elastin?

Blood clotting provides an example of the extracellular matrix’s role in cell communication. When the cells lining a blood vessel are damaged, they display a protein receptor, which we call tissue factor. When tissue factor binds with another factor in the extracellular matrix, it causes platelets to adhere to the damaged blood vessel’s wall, stimulates the adjacent smooth muscle cells in the blood vessel to contract (thus constricting the blood vessel), and initiates a series of steps that stimulate the platelets to produce clotting factors.

Extracellular matrix has been found to cause regrowth and healing of tissue. Although the mechanism of action by which extracellular matrix promotes constructive remodeling of tissue is still unknown, researchers now believe that Matrix-bound nanovesicles are a key player in the healing process. In human fetuses, the extracellular matrix works with stem cells to grow and regrow all parts of the human body, and fetuses can regrow anything that gets damaged in the womb. Scientists have long believed that the matrix stops functioning after full development. It has been used in the past to help horses heal torn ligaments, but it is being researched further as a device for tissue regeneration in humans.


Clark, M., Douglas, M., Choi, J. Biology 2e. Houston, Texas: OpenStax. Access for free at: https://openstax.org/details/books/biology-2e





0 0 vote
Article Rating
Notify of
Inline Feedbacks
View all comments