Electrochemical Gradient

Share


This illustration shows a membrane bilayer with a potassium channel embedded in it. The cytoplasm has a high concentration of potassium associated with a negatively charged molecule. The extracellular fluid has a high concentration of sodium associated with chlorine ions.
Electrochemical gradients arise from the combined effects of concentration gradients and electrical gradients. Structures labeled A represent proteins. (credit: “Synaptitude”/Wikimedia Commons)

OpenStax Biology 2e

Simple concentration gradients—a substance’s differential concentrations across a space or a membrane—but in living systems, gradients are more complex. Because ions move into and out of cells and because cells contain proteins that do not move across the membrane and are mostly negatively charged, there is also an electrical gradient, a difference of charge, across the plasma membrane. The interior of living cells is electrically negative with respect to the extracellular fluid in which they are bathed, and at the same time, cells have higher concentrations of potassium (K+) and lower concentrations of sodium (Na+) than the extracellular fluid. Thus in a living cell, the concentration gradient of Na+ tends to drive it into the cell, and its electrical gradient (a positive ion) also drives it inward to the negatively charged interior. However, the situation is more complex for other elements such as potassium. The electrical gradient of K+, a positive ion, also drives it into the cell, but the concentration gradient of K+ drives K+ out of the cell. We call the combined concentration gradient and electrical charge that affects an ion its electrochemical gradient.

– What is the amount of work needed to move a unit of charge from a reference point to a specific point inside the field without producing an acceleration?

Moving Against a Gradient

To move substances against a concentration or electrochemical gradient, the cell must use energy. This energy comes from ATP generated through the cell’s metabolism. Active transport mechanisms, or pumps, work against electrochemical gradients. Small substances constantly pass through plasma membranes. Active transport maintains concentrations of ions and other substances that living cells require in the face of these passive movements. A cell may spend much of its metabolic energy supply maintaining these processes. (A red blood cell uses most of its metabolic energy to maintain the imbalance between exterior and interior sodium and potassium levels that the cell requires.) Because active transport mechanisms depend on a cell’s metabolism for energy, they are sensitive to many metabolic poisons that interfere with the ATP supply.

Two mechanisms exist for transporting small-molecular weight material and small molecules. Primary active transport moves ions across a membrane and creates a difference in charge across that membrane, which is directly dependent on ATP. Secondary active transport does not directly require ATP: instead, it is the movement of material due to the electrochemical gradient established by primary active transport.

– What is the movement of molecules across a cell membrane from a region of lower concentration to a region of higher concentration against the concentration gradient, and requires cellular energy to achieve this movement?

Carrier Proteins for Active Transport

An important membrane adaption for active transport is the presence of specific carrier proteins or pumps to facilitate movement: there are three protein types or transporters. A uniporter carries one specific ion or molecule. A symporter carries two different ions or molecules, both in the same direction. An antiporter also carries two different ions or molecules, but in different directions. All of these transporters can also transport small, uncharged organic molecules like glucose. These three types of carrier proteins are also in facilitated diffusion, but they do not require ATP to work in that process. Some examples of pumps for active transport are Na+-K+ ATPase, which carries sodium and potassium ions, and H+-K+ ATPase, which carries hydrogen and potassium ions. Both of these are antiporter carrier proteins. Two other carrier proteins are Ca2+ ATPase and H+ ATPase, which carry only calcium and only hydrogen ions, respectively. Both are pumps.

– What is an integral membrane protein pump that builds up a proton gradient across a biological membrane?

This illustration shows a plasma membrane with three transport proteins embedded in it. The left image shows a uniporter that transports a substance in one direction. The middle image shows a symporter that transports two different substances in the same direction. The right image shows an antiporter that transports two different substances in opposite directions.
A uniporter carries one molecule or ion. A symporter carries two different molecules or ions, both in the same direction. An antiporter also carries two different molecules or ions, but in different directions. (credit: modification of work by “Lupask”/Wikimedia Commons)
Bacteriorhodopsin is a protein used by Archaea, most notably by halobacteria, a class of the Euryarchaeota. It acts as a proton pump; that is, it captures light energy and uses it to move protons across the membrane out of the cell. The resulting proton gradient is subsequently converted into chemical energy.

Source:

Clark, M., Douglas, M., Choi, J. Biology 2e. Houston, Texas: OpenStax. Access for free at: https://openstax.org/details/books/biology-2e

https://en.wikipedia.org/wiki/Electric_potential

https://en.wikipedia.org/wiki/Active_transport

https://en.wikipedia.org/wiki/Bacteriorhodopsin


Advertisements
Advertisements


0 0 vote
Article Rating
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments