Membrane Fluidity

Share


An illustration of a phospholipid shows a hydrophilic head group composed of phosphate connected to a three-carbon glycerol molecule, and two hydrophobic tails composed of long hydrocarbon chains.
A hydrophilic head and two hydrophobic tails comprise this phospholipid molecule. The hydrophilic head group consists of a phosphate-containing group attached to a glycerol molecule. The hydrophobic tails, each containing either a saturated or an unsaturated fatty acid, are long hydrocarbon chains.

Source: OpenStax Biology 2e

OpenStax Biology 2e

The membrane’s mosaic characteristic helps to illustrate its nature. The integral proteins and lipids exist in the membrane as separate but loosely attached molecules. These resemble the separate, multicolored tiles of a mosaic picture, and they float, moving somewhat with respect to one another. The membrane is not like a balloon, however, that can expand and contract; rather, it is fairly rigid and can burst if penetrated or if a cell takes in too much water. However, because of its mosaic nature, a very fine needle can easily penetrate a plasma membrane without causing it to burst, and the membrane will flow and self-seal when one extracts the needle.

The membrane’s mosaic characteristics explain some but not all of its fluidity. There are two other factors that help maintain this fluid characteristic. One factor is the nature of the phospholipids themselves. In their saturated form, the fatty acids in phospholipid tails are saturated with bound hydrogen atoms. There are no double bonds between adjacent carbon atoms. This results in tails that are relatively straight. In contrast, unsaturated fatty acids do not contain a maximal number of hydrogen atoms, but they do contain some double bonds between adjacent carbon atoms. A double bond results in a bend in the carbon string of approximately 30 degrees.

– What is a measure of fluid resistance to deformation at a given rate?

Thus, if decreasing temperatures compress saturated fatty acids with their straight tails, they press in on each other, making a dense and fairly rigid membrane. If unsaturated fatty acids are compressed, the “kinks” in their tails elbow adjacent phospholipid molecules away, maintaining some space between the phospholipid molecules. This “elbow room” helps to maintain fluidity in the membrane at temperatures at which membranes with saturated fatty acid tails in their phospholipids would “freeze” or solidify. The membrane’s relative fluidity is particularly important in a cold environment. A cold environment usually compresses membranes comprised largely of saturated fatty acids, making them less fluid and more susceptible to rupturing. Many organisms (fish are one example) are capable of adapting to cold environments by changing the proportion of unsaturated fatty acids in their membranes in response to lower temperature.

Animals have an additional membrane constituent that assists in maintaining fluidity. Cholesterol, which lies alongside the phospholipids in the membrane, tends to dampen temperature effects on the membrane. Thus, this lipid functions as a buffer, preventing lower temperatures from inhibiting fluidity and preventing increased temperatures from increasing fluidity too much. Thus, cholesterol extends, in both directions, the temperature range in which the membrane is appropriately fluid and consequently functional. Cholesterol also serves other functions, such as organizing clusters of transmembrane proteins into lipid rafts.

– What are a class of lipids that are a major component of all cell membranes, and form lipid bilayers because of their amphiphilic characteristic?

Microorganisms subjected to thermal stress are known to alter the lipid composition of their cell membrane. This is one way they can adjust the fluidity of their membrane in response to their environment. Membrane fluidity is known to affect the function of biomolecules residing within or associated with the membrane structure. For example, the binding of some peripheral proteins is dependent on membrane fluidity. Lateral diffusion of membrane-related enzymes can affect reaction rates. Consequently, membrane-dependent functions, such as phagocytosis and cell signalling, can be regulated by the fluidity of the cell-membrane.

Source:

Clark, M., Douglas, M., Choi, J. Biology 2e. Houston, Texas: OpenStax. Access for free at: https://openstax.org/details/books/biology-2e

https://en.wikipedia.org/wiki/Viscosity

https://en.wikipedia.org/wiki/Phospholipid

https://en.wikipedia.org/wiki/Membrane_fluidity#Biological_relevance


Advertisements
Advertisements


0 0 vote
Article Rating
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments