Endergonic Reactions and Exergonic Reactions


There are four photos show.  The first photo shows a pile of wood chips and dirt, with small plants growing from this.  The second photo shows a small baby bird breaking out of its egg as it hatches.  The third photo shows a large patch of desert where someone has drawn patterns in the sand.  The fourth photo shows a grassy hill outside where people climb into giant inflatable balls and roll down the hillside.
This figure shows some examples of endergonic processes (ones that require energy) and exergonic processes (ones that release energy). These include (a) a compost pile decomposing, (b) a chick developing from a fertilized egg, (c) sand art destruction, and (d) a ball rolling down a hill. (credit a: modification of work by Natalie Maynor; credit b: modification of work by USDA; credit c: modification of work by “Athlex”/Flickr; credit d: modification of work by Harry Malsch)

OpenStax Biology 2e

If energy releases during a chemical reaction, then the resulting value from the above equation will be a negative number. In other words, reactions that release energy have a ∆G < 0. A negative ∆G also means that the reaction’s products have less free energy than the reactants, because they gave off some free energy during the reaction. Scientists call reactions that have a negative ∆G and consequently release free energy exergonic reactions. Think: exergonic means energy is exiting the system. We also refer to these reactions as spontaneous reactions, because they can occur without adding energy into the system. Understanding which chemical reactions are spontaneous and release free energy is extremely useful for biologists, because these reactions can be harnessed to perform work inside the cell. We must draw an important distinction between the term spontaneous and the idea of a chemical reaction that occurs immediately. Contrary to the everyday use of the term, a spontaneous reaction is not one that suddenly or quickly occurs. Rusting iron is an example of a spontaneous reaction that occurs slowly, little by little, over time.

– In chemical reaction, what is the value of reaction quotient at chemical equilibrium which is a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency towards further change?

If a chemical reaction requires an energy input rather than releasing energy, then the ∆G for that reaction will be a positive value. In this case, the products have more free energy than the reactants. Thus, we can think of the reactions’ products as energy-storing molecules. We call these chemical reactions endergonic reactions, and they are non-spontaneous. An endergonic reaction will not take place on its own without adding free energy.

An example of the synthesis and breakdown of the food molecule is glucose in which the building complex molecules, such as sugars, from simpler ones is an anabolic process and requires energy. Therefore, the chemical reactions involved in anabolic processes are endergonic reactions. Alternatively, the catabolic process of breaking sugar down into simpler molecules releases energy in a series of exergonic reactions. Like the rust example above, the sugar breakdown involves spontaneous reactions, but these reactions do not occur instantaneously. 

– What is the time-evolution of a system in which free energy is released and it moves from a higher energy state to a lower, more thermodynamically stable energy state?

An important concept in studying metabolism and energy is that of chemical equilibrium. Most chemical reactions are reversible. They can proceed in both directions, releasing energy into their environment in one direction, and absorbing it from the environment in the other direction. The same is true for the chemical reactions involved in cell metabolism, such as the breaking down and building up of proteins into and from individual amino acids, respectively. Reactants within a closed system will undergo chemical reactions in both directions until they reach a state of equilibrium, which is one of the lowest possible free energy and a state of maximal entropy. To push the reactants and products away from a state of equilibrium requires energy. Either reactants or products must be added, removed, or changed. If a cell were a closed system, its chemical reactions would reach equilibrium, and it would die because there would be insufficient free energy left to perform the necessary work to maintain life. In a living cell, chemical reactions are constantly moving towards equilibrium, but never reach it. This is because a living cell is an open system. Materials pass in and out, the cell recycles the products of certain chemical reactions into other reactions, and there is never chemical equilibrium. In this way, living organisms are in a constant energy-requiring, uphill battle against equilibrium and entropy. This constant energy supply ultimately comes from sunlight, which produces nutrients in the photosynthesis process.

– What is the science or act of measuring changes in state variables of a body for the purpose of deriving the heat transfer associated with changes of its state due?

The two plots show the change in Gibbs free energy as reactants are converted to products. Gibbs free energy decreases with time for an exergonic reaction (left), and the reaction is spontaneous. Gibbs free energy increases with time for an endergonic reaction (right), and the reaction is not spontaneous.
Exergonic and endergonic reactions result in changes in Gibbs free energy. Exergonic reactions release energy. Endergonic reactions require energy to proceed.

Source: OpenStax Biology 2e
According to Kenneth Denbigh (1981), the property of hotness is a concern of thermodynamics that should be defined without reference to the concept of heat. Consideration of hotness leads to the concept of empirical temperature. All physical systems are capable of heating or cooling others. With reference to hotness, the comparative terms hotter and colder are defined by the rule that heat flows from the hotter body to the colder.


Clark, M., Douglas, M., Choi, J. Biology 2e. Houston, Texas: OpenStax. Access for free at: https://openstax.org/details/books/biology-2e




Hotness. https://en.wikipedia.org/wiki/Heat#%22hotness%22


0 0 vote
Article Rating
Notify of
Inline Feedbacks
View all comments