Gene Expression


This illustration shows the pathway by which E R K, a M A P kinase, activates protein synthesis. Phosphorylated E R K phosphorylates M N K 1, which in turn phosphorylates lower e upper I upper F dash 4 E, which is associated with lower m upper R upper N upper A. When lower e upper I upper F dash 4 E is phosphorylated, the m R N A unfolds and protein synthesis begins.
ERK is a MAP kinase that activates translation when it is phosphorylated. ERK phosphorylates MNK1, which in turn phosphorylates eIF-4E, an elongation initiation factor that, with other initiation factors, is associated with mRNA. When eIF-4E becomes phosphorylated, the mRNA unfolds, allowing protein synthesis in the nucleus to begin. Source: OpenStax Biology 2e

OpenStax Biology 2e

Inside the cell, ligands bind to their internal receptors, allowing them to directly affect the cell’s DNA and protein-producing machinery. Using signal transduction pathways, receptors in the plasma membrane produce a variety of effects on the cell. The results of signaling pathways are extremely varied and depend on the type of cell involved as well as the external and internal conditions. A small sampling of responses is described below.

Gene Expression

Some signal transduction pathways regulate the transcription of RNA. Others regulate the translation of proteins from mRNA. An example of a protein that regulates translation in the nucleus is the MAP kinase ERK. The MAPK/ERK pathway (also known as the Ras-Raf-MEK-ERK pathway) is a chain of proteins in the cell that communicates a signal from a receptor on the surface of the cell to the nuclear DNA. ERK is activated in a phosphorylation cascade when epidermal growth factor (EGF) binds the EGF receptor. Upon phosphorylation, ERK enters the nucleus and activates a protein kinase that, in turn, regulates protein translation.

Another mechanism of gene regulation involves PKC, which can interact with is a protein that acts as an inhibitor. An inhibitor is a molecule that binds to a protein and prevents it from functioning or reduces its function. In this case, the inhibitor is a protein called Iκ-B, which binds to the regulatory protein NF-κB. (The symbol κ represents the Greek letter kappa.) When Iκ-B is bound to NF-κB, the complex cannot enter the nucleus of the cell, but when Iκ-B is phosphorylated by PKC, it can no longer bind NF-κB, and NF-κB (a transcription factor) can enter the nucleus and initiate RNA transcription. In this case, the effect of phosphorylation is to inactivate an inhibitor and thereby activate the process of transcription.


Clark, M., Douglas, M., Choi, J. Biology 2e. Houston, Texas: OpenStax. Access for free at:


0 0 vote
Article Rating
Notify of
Inline Feedbacks
View all comments