Meiosis II

Advertisements
Advertisements


Related Posts


This illustration compares chromosome alignment in meiosis I and meiosis II. In prometaphase I, homologous pairs of chromosomes are held together by chiasmata. In anaphase I, the homologous pair separates and the connections at the chiasmata are broken, but the sister chromatids remain attached at the centromere. In prometaphase II, the sister chromatids are held together at the centromere. In anaphase II, the centromere connections are broken and the sister chromatids separate.
The process of chromosome alignment differs between meiosis I and meiosis II. In prometaphase I, microtubules attach to the fused kinetochores of homologous chromosomes, and the homologous chromosomes are arranged at the midline of the cell (the metaphase plate) in metaphase I. In anaphase I, the homologous chromosomes separate. In prometaphase II, microtubules attach to the kinetochores of sister chromatids, and the sister chromatids are arranged at the midpoint of the cells in metaphase II. In anaphase II, the sister chromatids separate. Source: OpenStax Biology 2e

OpenStax Biology 2e

In some species, cells enter a brief interphase, or interkinesis, before entering meiosis II. Interkinesis lacks an S phase, so chromosomes are not duplicated. The two cells produced in meiosis I go through the events of meiosis II in synchrony. During meiosis II, the sister chromatids within the two daughter cells separate, forming four new haploid gametes. The mechanics of meiosis II are similar to mitosis, except that each dividing cell has only one set of homologous chromosomes, each with two chromatids. Therefore, each cell has half the number of sister chromatids to separate out as a diploid cell undergoing mitosis. In terms of chromosomal content, cells at the start of meiosis II are similar to haploid cells in G2, preparing to undergo mitosis.

Prophase II

If the chromosomes decondensed in telophase I, they condense again. If nuclear envelopes were formed, they fragment into vesicles. The MTOCs that were duplicated during interkinesis move away from each other toward opposite poles, and new spindles are formed.

Prometaphase II

The nuclear envelopes are completely broken down, and the spindle is fully formed. Each sister chromatid forms an individual kinetochore that attaches to microtubules from opposite poles.

Metaphase II

The sister chromatids are maximally condensed and aligned at the equator of the cell.

Anaphase II

The sister chromatids are pulled apart by the kinetochore microtubules and move toward opposite poles. Nonkinetochore microtubules elongate the cell.

Telophase II and Cytokinesis

The chromosomes arrive at opposite poles and begin to decondense. Nuclear envelopes form around the chromosomes. If the parent cell was diploid, as is most commonly the case, then cytokinesis now separates the two cells into four unique haploid cells. The cells produced are genetically unique because of the random assortment of paternal and maternal homologs and because of the recombination of maternal and paternal segments of chromosomes (with their sets of genes) that occurs during crossover.

Source:

Clark, M., Douglas, M., Choi, J. Biology 2e. Houston, Texas: OpenStax. Access for free at: https://openstax.org/details/books/biology-2e

0 0 vote
Article Rating
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments