Phylum Nematoda

Advertisements
Advertisements

Photo a shows a worm-shaped nematode next to a capsule-shaped nematode egg. The illustration in part b shows a cross-section of a nematode, which has a mouth at one end and an anus at the other. The mouth connects to a pharynx, then to an intestine. A dorsal nerve runs along the top of the animal and joins ring-like head ganglia at the front end. Testes run alongside the intestine toward the back of the animal.
Nematode morphology. Scanning electron micrograph shows (a) the soybean cyst nematode (Heterodera glycines) and a nematode egg. (b) A schematic representation shows the anatomy of a typical nematode. (credit a: modification of work by USDA ARS; scale-bar data from Matt Russell)

OpenStax Biology 2e

The Nematoda, like other members of the superphylum Ecdysozoa, are triploblastic and possess an embryonic mesoderm that is sandwiched between the ectoderm and endoderm. They are also bilaterally symmetrical, meaning that a longitudinal section will divide them into right and left sides that are superficially symmetrical. In contrast with flatworms, nematodes are pseudocoelomates and show a tubular morphology and circular cross-section. Nematodes include both free-living and parasitic forms.

In 1914, N.A. Cobb said, “In short, if all the matter in the universe except the nematodes were swept away, our world would still be dimly recognizable, and if, as disembodied spirits, we could then investigate it, we should find its mountains, hills, vales, rivers, lakes and oceans represented by a thin film of nematodes…” To paraphrase Cobb, nematodes are so abundant that if all the non-nematode matter of the biosphere were removed, there would still remain a shadow of the former world outlined by nematodes!1 The phylum Nematoda includes more than 28,000 species with an estimated 16,000 being parasitic in nature. However, nematologists believe there may be over one million unclassified species.

The name Nematoda is derived from the Greek word “Nemos,” which means “thread,” and includes all true roundworms. Nematodes are present in all habitats, typically with each species occurring in great abundance. The free-living nematode, Caenorhabditis elegans, has been extensively used as a model system for many different avenues of biological inquiry in laboratories all over the world.

Morphology

The cylindrical body form of the nematodes is seen in the image above. These animals have a complete digestive system with a distinct mouth and anus, whereas only one opening is present in the digestive tract of flatworms. The mouth opens into a muscular pharynx and intestine, which leads to a rectum and anal opening at the posterior end. The epidermis can be either a single layer of cells or a syncytium—a multinucleated tissue that in this case is formed by the fusion of many single cells. The cuticle of nematodes is rich in collagen and a polymer called chitin, which forms a protective armor outside the epidermis. The cuticle extends into both ends of the digestive tract, the pharynx, and rectum. In the head, an anterior mouth opening is composed of three (or six) “lips” as well as teeth derived from the cuticle (in some species). Some nematodes may present other modifications of the cuticle such as rings, head shields, or warts. These external rings, however, do not reflect true internal body segmentation, which as we have seen is a hallmark of phylum Annelida. The attachment of the muscles of nematodes differs from that of most animals: they have a longitudinal layer only, and their direct attachment to the dorsal and ventral nerve cords creates a strong muscular contraction that results in a whiplike, almost spastic, body movement.

Excretory System

In nematodes, specialized excretory systems are not well developed. Nitrogenous wastes, largely in the form of ammonia, are released directly across the body wall. In some nematodes, osmoregulation and salt balance are performed by simple excretory cells or glands that may be connected to paired canals that release wastes through an anterior pore. In marine nematodes, the excretory cells are called renette cells, which are unique to nematodes.

Nervous system

Most nematodes have four longitudinal nerve cords that run along the length of the body in dorsal, ventral, and lateral positions. The ventral nerve cord is better developed than the dorsal and lateral cords. Nonetheless, all nerve cords fuse at the anterior end, to form a pharyngeal nerve ring around the pharynx, which acts as the head ganglion or the “brain” of the roundworm. A similar fusion forms a posterior ganglion at the tail. In C. elegans, the nervous system accounts for nearly one-third of the total number of cells in the animal!

Reproduction

Nematodes employ a variety of reproductive strategies ranging from monoecious to dioecious to parthenogenetic, depending upon the species. Celegans is a mostly monoecious species with both self-fertilizing hermaphrodites and some males. In the hermaphrodites, ova and sperm develop at different times in the same gonad. Ova are contained in a uterus and amoeboid sperm are contained in a spermatheca (“sperm receptacle”). The uterus has an external opening known as the vulva. The female genital pore is near the middle of the body, whereas the male genital pore is nearer to the tip. In anatomical males, specialized structures called copulatory spicules at the tail of the male keep him in place and open the vulva of the female into which the amoeboid sperm travel into the spermatheca.

Fertilization is internal, and embryonic development starts very soon after fertilization. The embryo is released from the vulva during the gastrulation stage. The embryonic development stage lasts for 14 hours; development then continues through four successive larval stages with molting and ecdysis taking place between each stage—L1, L2, L3, and L4—ultimately leading to the development of a young adult worm. Adverse environmental conditions such as overcrowding or lack of food can result in the formation of an intermediate larval stage known as the dauer larva. An unusual feature of some nematodes is eutely: the body of a given species contains a specific number of cells as the consequence of a rigid developmental pathway.

Source:

Clark, M., Douglas, M., Choi, J. Biology 2e. Houston, Texas: OpenStax. Access for free at: https://openstax.org/details/books/biology-2e

Advertisements
Advertisements
0 0 vote
Article Rating
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments