Solute Potential of Plants


Related Posts

Illustration shows a U-shaped tube holding pure water. A semipermeable membrane, which allows water but not solutes to pass, separates the two sides of the tube. The water level on each side of the tube is the same. Beneath this tube are three more tubes, also divided by semipermeable membranes. In the first tube, solute has been added to the right side. Adding solute to the right side lowers p s i dash s, causing water to move to the right side of the tube. As a result, the water level is higher on the right side. The second tube has pure water on both sides of the membrane. Positive pressure is applied to the left side. Applying positive pressure to the left side causes p s i dash p to increase. As a results, water moves to the right so that the water level is higher on the right than on the left. The third tube also has pure water, but this time negative pressure is applied to the left side. Applying negative pressure lowers p s i dash p, causing water to move to the left side of the tube. As a result, the water level is higher on the left.
In this example with a semipermeable membrane between two aqueous systems, water will move from a region of higher to lower water potential until equilibrium is reached. Solutes (Ψs), pressure (Ψp), and gravity (Ψg) influence total water potential for each side of the tube (Ψtotal right or left), and therefore, the difference between Ψtotal on each side (ΔΨ). (Ψm , the potential due to interaction of water with solid substrates, is ignored in this example because glass is not especially hydrophilic). Water moves in response to the difference in water potential between two systems (the left and right sides of the tube). Source: OpenStax Biology 2e

OpenStax Biology 2e

Solute potential (Ψs), also called osmotic potential, is related to the solute concentration (in molarity). That relationship is given by the van ‘t Hoff equation: Ψs= –Mi RT; where M is the molar concentration of the solute, i is the van ‘t Hoff factor (the ratio of the amount of particles in the solution to amount of formula units dissolved), R is the ideal gas constant, and T is temperature in Kelvin degrees. The solute potential is negative in a plant cell and zero in distilled water. Typical values for cell cytoplasm are –0.5 to –1.0 MPa. Solutes reduce water potential (resulting in a negative Ψw) by consuming some of the potential energy available in the water. Solute molecules can dissolve in water because water molecules can bind to them via hydrogen bonds; a hydrophobic molecule like oil, which cannot bind to water, cannot go into solution. The energy in the hydrogen bonds between solute molecules and water is no longer available to do work in the system because it is tied up in the bond. In other words, the amount of available potential energy is reduced when solutes are added to an aqueous system. Thus, Ψ s decreases with increasing solute concentration. Because Ψs is one of the four components of Ψsystem or Ψtotal, a decrease in Ψs will cause a decrease in Ψtotal. The internal water potential of a plant cell is more negative than pure water because of the cytoplasm’s high solute content. Because of this difference in water potential water will move from the soil into a plant’s root cells via the process of osmosis. This is why solute potential is sometimes called osmotic potential.

Plant cells can metabolically manipulate Ψs (and by extension, Ψtotal) by adding or removing solute molecules. Therefore, plants have control over Ψtotal via their ability to exert metabolic control over Ψs.


Clark, M., Douglas, M., Choi, J. Biology 2e. Houston, Texas: OpenStax. Access for free at:

0 0 vote
Article Rating
Notify of
Inline Feedbacks
View all comments