Transport of Electrolytes Across Cell Membranes

Full skill ahead. Online video courses from $9.99

Related Posts

Electrolytic cell producing chlorine and Sodium hydroxide from a solution of common salt. By Jkwchui – Based on * Bommaraju, Tilak V.; Orosz, Paul J.; Sokol, Elizabeth A.(2007). “Brine Electrolysis.” Electrochemistry Encyclopedia. Cleveland: Case Western Rsserve University.MSN Encarta. “Chloralkali Electrolysis.” Archived 2009-10-31, CC BY-SA 3.0,

OpenStax Biology 2e

Electrolytes, such as sodium chloride, ionize in water, meaning that they dissociate into their component ions. In water, sodium chloride (NaCl), dissociates into the sodium ion (Na+) and the chloride ion (Cl). The most important ions, whose concentrations are very closely regulated in body fluids, are the cations sodium (Na+), potassium (K+), calcium (Ca+2), magnesium (Mg+2), and the anions chloride (Cl), carbonate (CO3-2), bicarbonate (HCO3), and phosphate(PO3). Electrolytes are lost from the body during urination and perspiration. For this reason, athletes are encouraged to replace electrolytes and fluids during periods of increased activity and perspiration.

Osmotic pressure is influenced by the concentration of solutes in a solution. It is directly proportional to the number of solute atoms or molecules and not dependent on the size of the solute molecules. Because electrolytes dissociate into their component ions, they, in essence, add more solute particles into the solution and have a greater effect on osmotic pressure, per mass than compounds that do not dissociate in water, such as glucose.

Water can pass through membranes by passive diffusion. If electrolyte ions could passively diffuse across membranes, it would be impossible to maintain specific concentrations of ions in each fluid compartment therefore they require special mechanisms to cross the semi-permeable membranes in the body. This movement can be accomplished by facilitated diffusion and active transport. Facilitated diffusion requires protein-based channels for moving the solute. Active transport requires energy in the form of ATP conversion, carrier proteins, or pumps in order to move ions against the concentration gradient.


Clark, M., Douglas, M., Choi, J. Biology 2e. Houston, Texas: OpenStax. Access for free at:


0 0 vote
Article Rating
Notify of
Inline Feedbacks
View all comments