Conservation of Wildlife and Ecosystem Preserves


Related Posts


OpenStax Biology 2e

Establishment of wildlife and ecosystem preserves is one of the key tools in conservation efforts. A preserve is an area of land set aside with varying degrees of protection for the organisms that exist within the boundaries of the preserve. Preserves can be effective in the short term for protecting both species and ecosystems, but they face challenges that scientists are still exploring to strengthen their viability as long-term solutions to the preservation of biodiversity and the prevention of extinction.

How Much Area to Preserve?

Due to the way protected lands are allocated and the way biodiversity is distributed, it is challenging to determine how much land or marine habitat should be protected. The IUCN World Parks Congress estimated that 11.5 percent of Earth’s land surface was covered by preserves of various kinds in 2003. We should note that this area is greater than previous goals; however, it only includes 9 out of 14 recognized major biomes. Similarly, individual animals or types of animals are not equally represented on preserves. For example, high quality preserves include only about 50 percent of threatened amphibian species. To guarantee that all threatened species will be properly protected, either the protected areas must increase in size, or the percentage of high quality preserves must increase, or preserves must be targeted with greater attention to biodiversity protection. Researchers indicate that more attention to the latter solution is required.

Preserve Design

There has been extensive research into optimal preserve designs for maintaining biodiversity. The fundamental principle behind much of the research has been the seminal theoretical work of Robert H. MacArthur and Edward O. Wilson published in 1967 on island biogeography.5 This work sought to understand the factors affecting biodiversity on islands. The fundamental conclusion was that biodiversity on an island was a function of the origin of species through migration, speciation, and extinction on that island. Islands farther from a mainland are harder to get to, so migration is lower and the equilibrium number of species is lower. Within island populations, evidence suggests that the number of species gradually increases to a level similar to the numbers on the mainland from which the species is suspected to have migrated. In addition, smaller islands are harder to find, so their immigration rates for new species are typically lower. Smaller islands are also less geographically diverse so all things being equal, there are fewer niches to promote speciation. And finally, smaller islands support smaller populations, so the probability of extinction is higher.

As islands get larger, the number of species able to colonize the island and find suitable niches on the island increases, although the effect of island area on species numbers is not a direct correlation. Conservation preserves can be seen as “islands” of habitat within “an ocean” of non-habitat. For a species to persist in a preserve, the preserve must be large enough to support it. The critical size depends, in part, on the home range that is characteristic of the species. A preserve for wolves, which range hundreds of kilometers, must be much larger than a preserve for butterflies, which might range within ten kilometers during its lifetime. But larger preserves have more core area of optimal habitat for individual species, they have more niches to support more species, and they attract more species because they can be found and reached more easily.

Preserves perform better when there are buffer zones around them of suboptimal habitat. The buffer allows organisms to exit the boundaries of the preserve without immediate negative consequences from predation or lack of resources. One large preserve is better than the same area of several smaller preserves because there is more core habitat unaffected by edges. For this same reason, preserves in the shape of a square or circle will be better than a preserve with many thin “arms.” If preserves must be smaller, then providing wildlife corridors between them so that individuals (and their genes) can move between the preserves, for example along rivers and streams, will make the smaller preserves behave more like a large one. All of these factors are taken into consideration when planning the nature of a preserve before the land is set aside.

In addition to the physical, biological, and ecological specifications of a preserve, there are a variety of policy, legislative, and enforcement specifications related to uses of the preserve for functions other than protection of species. These can include anything from timber extraction, mineral extraction, regulated hunting, human habitation, and nondestructive human recreation. Many of these policy decisions are made based on political pressures rather than conservation considerations. In some cases, wildlife protection policies have been so strict that subsistence-living indigenous populations have been forced from ancestral lands that fell within a preserve. In other cases, even if a preserve is designed to protect wildlife, if the protections are not or cannot be enforced, the preserve status will have little meaning in the face of illegal poaching and timber extraction. This is a widespread problem with preserves in areas of the tropics.

Limitations on Preserves

Some of the limitations on preserves as conservation tools are evident from the discussion of preserve design. Political and economic pressures typically make preserves smaller, rather than larger, so setting aside areas that are large enough is difficult. If the area set aside is sufficiently large, there may not be sufficient area to create a buffer around the preserve. In this case, an area on the outer edges of the preserve inevitably becomes a riskier suboptimal habitat for the species in the preserve. Enforcement of protections is also a significant issue in countries without the resources or political will to prevent poaching and illegal resource extraction.

Climate change will create inevitable problems with the location of preserves. The species within them may migrate to higher latitudes as the habitat of the preserve becomes less favorable. Scientists are planning for the effects of global warming on future preserves and striving to predict the need for new preserves to accommodate anticipated changes to habitats; however, the end effectiveness is tenuous since these efforts are prediction based.

Finally, an argument can be made that conservation preserves indicate that humans are growing more separate from nature, and that humans only operate in ways that do damage to biodiversity. Creating preserves may reduce the pressure on humans outside the preserve to be sustainable and non-damaging to biodiversity. On the other hand, properly managed, high quality preserves present opportunities for humans to witness nature in a less damaging way, and preserves may present some financial benefits to local economies. Ultimately, the economic and demographic pressures on biodiversity are unlikely to be mitigated by preserves alone. In order to fully benefit from biodiversity, humans will need to alter activities that damage it.

Source:

Clark, M., Douglas, M., Choi, J. Biology 2e. Houston, Texas: OpenStax. Access for free at: https://openstax.org/details/books/biology-2e


Advertisements
Advertisements
Advertisements
Advertisements


0 0 vote
Article Rating
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments