Human Population Growth

Graph plots the world population growth from 1000 A D to the present. The curve starts out flat, and then becomes increasingly steep. A sharp increase in population occurs around 1900. In 1000 A D the population was around 265 million. In 2000 it was around 6 billion. Populations of various parts of the world are also plotted, including Africa, Asia, Europe, Latin America, North America, and Oceania. With the exception of Europe, the change in population in each region is similar to the change in world population. In Europe, the population is now stagnant.
Human population growth since 1000 AD is exponential (dark blue line). Notice that while the population in Asia (yellow line), which has many economically underdeveloped countries, is increasing exponentially, the population in Europe (light blue line), where most of the countries are economically developed, is growing much more slowly. Source: OpenStax Biology 2e

OpenStax Biology 2e

Population dynamics can be applied to human population growth. Earth’s human population is growing rapidly, to the extent that some worry about the ability of the earth’s environment to sustain this population. Long-term exponential growth carries the potential risks of famine, disease, and large-scale death.

Although humans have increased the carrying capacity of their environment, the technologies used to achieve this transformation have caused unprecedented changes to Earth’s environment, altering ecosystems to the point where some may be in danger of collapse. The depletion of the ozone layer, erosion due to acid rain, and damage from global climate change are caused by human activities. The ultimate effect of these changes on our carrying capacity is unknown. As some point out, it is likely that the negative effects of increasing carrying capacity will outweigh the positive ones—the world’s carrying capacity for human beings might actually decrease.

The human population is currently experiencing exponential growth even though human reproduction is far below its biotic potential. To reach its biotic potential, all females would have to become pregnant every nine months or so during their reproductive years. Also, resources would have to be such that the environment would support such growth. Neither of these two conditions exists. In spite of this fact, human population is still growing exponentially.

A consequence of exponential human population growth is a reduction in time that it takes to add a particular number of humans to the Earth. The image below shows that 123 years were necessary to add 1 billion humans in 1930, but it only took 24 years to add two billion people between 1975 and 1999. As already discussed, our ability to increase our carrying capacity indefinitely my be limited. Without new technological advances, the human growth rate has been predicted to slow in the coming decades. However, the population will still be increasing and the threat of overpopulation remains.

Bar graph shows the number of years it has taken to add each billion people to the world population. By 1800, there were about a billion people on Earth. It took 130 years, until 19 30, for the number to reach two billion. Thirty years later, in 19 60, the number reached three billion, and 15 years after that, in 19 75, the number reached four billion. The population reached five billion in 19 87, and six billion in 19 99, each twelve years apart. In 2012, the world population was nearly seven billion. The population is projected to reach 8 billion in 20 28, and 9 billion in 20 54, inidcating that it will take more years between each increase in billions of people.
The time between the addition of each billion human beings to Earth decreases over time. (credit: modification of work by Ryan T. Cragun)

Source:

Clark, M., Douglas, M., Choi, J. Biology 2e. Houston, Texas: OpenStax. Access for free at: https://openstax.org/details/books/biology-2e


Advertisements
Advertisements


0 0 vote
Article Rating
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments