Solar Thermal Energy Power Plants

Related Posts

This figure has two parts labeled a and b. Part a shows rows and rows of trough mirrors. Part b shows how a solar thermal plant works. Heat transfer fluid enters a tank via pipes. The tank contains water which is heated. As the heat is exchanged from the pipes to the water, the water becomes steam. The steam travels to a steam turbine. The steam turbine begins to turn which powers a generator. Exhaust steam exits the steam turbine and enters a cooling tower.
This solar thermal plant uses parabolic trough mirrors to concentrate sunlight. (credit a: modification of work by Bureau of Land Management)

Solar Thermal Energy Power Plants (OpenStax Chemistry 2e)

The sunlight that reaches the earth contains thousands of times more energy than we presently capture. Solar thermal systems provide one possible solution to the problem of converting energy from the sun into energy we can use. Large-scale solar thermal plants have different design specifics, but all concentrate sunlight to heat some substance; the heat “stored” in that substance is then converted into electricity.

The Solana Generating Station in Arizona’s Sonora Desert produces 280 megawatts of electrical power. It uses parabolic mirrors that focus sunlight on pipes filled with a heat transfer fluid (HTF). The HTF then does two things: It turns water into steam, which spins turbines, which in turn produces electricity, and it melts and heats a mixture of salts, which functions as a thermal energy storage system. After the sun goes down, the molten salt mixture can then release enough of its stored heat to produce steam to run the turbines for 6 hours. Molten salts are used because they possess a number of beneficial properties, including high heat capacities and thermal conductivities.

The 377-megawatt Ivanpah Solar Generating System, located in the Mojave Desert in California, is the largest solar thermal power plant in the world. Its 170,000 mirrors focus huge amounts of sunlight on three water-filled towers, producing steam at over 538 °C that drives electricity-producing turbines. It produces enough energy to power 140,000 homes. Water is used as the working fluid because of its large heat capacity and heat of vaporization.

Two pictures are shown and labeled a and b. Picture a shows a thermal plant with three tall metal towers. Picture b is an arial picture of the mirrors used at the plant. They are arranged in rows.
(a) The Ivanpah solar thermal plant uses 170,000 mirrors to concentrate sunlight on water-filled towers. (b) It covers 4000 acres of public land near the Mojave Desert and the California-Nevada border. (credit a: modification of work by Craig Dietrich; credit b: modification of work by “USFWS Pacific Southwest Region”/Flickr)

Related Research: Research Article: An Approach to Enhance the Conservation-Compatibility of Solar Energy Development


Flowers, P., Theopold, K., Langley, R., & Robinson, W. R. (2019, February 14). Chemistry 2e. Houston, Texas: OpenStax. Access for free at:


Related External Link:

Integration of daytime radiative cooling and solar heating for year-round energy saving in buildings

Leave a Reply

Your email address will not be published.