Assignment of Hybrid Orbitals to Central Atoms

Advertisements
Advertisements

Related Posts


Hybrid Orbitals. A table is shown that is composed of five columns and six rows. The header row contains the phrases, “Regions of electron density,” “Arrangement,” (which has two columns below it), and “Hybridization,” (which has two columns below it). The first column contains the numbers “2,” “3,” “4,” “5,” and “6.” The second column contains images of a line, a triangle, a three sided pyramid, a trigonal bipyramid, and an eight-faced ocatahedron. The third column contains the terms, “Linear,” “Trigonal planar,” “Tetrahedral,” “Trigonal bipyramidal,” and “Octahedral.” The fourth column contains the terms “s p,” “s p superscript 2,” “s p superscript 3,” “s p superscript 3 d,” and “s p superscript 3 d superscript 2.” The last column contains drawings of the molecules beginning with a peanut-shaped structure marked with an angle of “180 degrees.” The second structure is made up of three equal-sized, rounded structures connected at one point with an angle of “120 degrees,” while the third structure is a three-dimensional arrangement of four equal-sized, rounded structures labeled as “109.5 degrees.” The fourth structure is made up of five equal-sized, rounded structures connected at “120 and 90 degrees,” while the fifth structure has six equal-sized, rounded structures connected at “90 degrees.”
Figure 1 The shapes of hybridized orbital sets are consistent with the electron-pair geometries. For example, an atom surrounded by three regions of electron density is sp2 hybridized, and the three sp2 orbitals are arranged in a trigonal planar fashion. Source: OpenStax Chemistry 2e

Assignment of Hybrid Orbitals to Central Atoms (OpenStax Chemistry 2e)

The hybridization of an atom is determined based on the number of regions of electron density that surround it. The geometrical arrangements characteristic of the various sets of hybrid orbitals are shown in Figure 1. These arrangements are identical to those of the electron-pair geometries predicted by VSEPR theory. VSEPR theory predicts the shapes of molecules, and hybrid orbital theory provides an explanation for how those shapes are formed. To find the hybridization of a central atom, we can use the following guidelines:

  1. Determine the Lewis structure of the molecule.
  2. Determine the number of regions of electron density around an atom using VSEPR theory, in which single bonds, multiple bonds, radicals, and lone pairs each count as one region.
  3. Assign the set of hybridized orbitals from Figure 1 that corresponds to this geometry.

It is important to remember that hybridization was devised to rationalize experimentally observed molecular geometries. The model works well for molecules containing small central atoms, in which the valence electron pairs are close together in space. However, for larger central atoms, the valence-shell electron pairs are farther from the nucleus, and there are fewer repulsions. Their compounds exhibit structures that are often not consistent with VSEPR theory, and hybridized orbitals are not necessary to explain the observed data. For example, we have discussed the H–O–H bond angle in H2O, 104.5°, which is more consistent with sp3 hybrid orbitals (109.5°) on the central atom than with 2p orbitals (90°). Sulfur is in the same group as oxygen, and H2S has a similar Lewis structure. However, it has a much smaller bond angle (92.1°), which indicates much less hybridization on sulfur than oxygen. Continuing down the group, tellurium is even larger than sulfur, and for H2Te, the observed bond angle (90°) is consistent with overlap of the 5p orbitals, without invoking hybridization. We invoke hybridization where it is necessary to explain the observed structures.

Related Topic: sp3d and sp3d2 Hybridization

Source:

Flowers, P., Theopold, K., Langley, R., & Robinson, W. R. (2019, February 14). Chemistry 2e. Houston, Texas: OpenStax. Access for free at: https://openstax.org/books/chemistry-2e


Advertisements
Advertisements

Related External Link: HPV in situ hybridization: impact of different protocols on the detection of integrated HPV

0 0 vote
Article Rating
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments