Volume and Pressure: Boyle’s Law


Related Posts:

This figure contains a diagram and two graphs. The diagram shows a syringe labeled with a scale in m l or c c with multiples of 5 labeled beginning at 5 and ending at 30. The markings halfway between these measurements are also provided. Attached at the top of the syringe is a pressure gauge with a scale marked by fives from 40 on the left to 5 on the right. The gauge needle rests between 10 and 15, slightly closer to 15. The syringe plunger position indicates a volume measurement about halfway between 10 and 15 m l or c c. The first graph is labeled “V ( m L )” on the horizontal axis and “P ( p s i )” on the vertical axis. Points are labeled at 5, 10, 15, 20, and 25 m L with corresponding values of 39.0, 19.5, 13.0, 9.8, and 6.5 p s i. The points are connected with a smooth curve that is declining at a decreasing rate of change. The second graph is labeled “V ( m L )” on the horizontal axis and “1 divided by P ( p s i )” on the vertical axis. The horizontal axis is labeled at multiples of 5, beginning at zero and extending up to 35 m L. The vertical axis is labeled by multiples of 0.02, beginning at 0 and extending up to 0.18. Six points indicated by black dots on this graph are connected with a black line segment showing a positive linear trend.
Figure 1. When a gas occupies a smaller volume, it exerts a higher pressure; when it occupies a larger volume, it exerts a lower pressure (assuming the amount of gas and the temperature do not change). Since P and V are inversely proportional, a graph of 1/P vs. V is linear. Source: OpenStax Chemistry 2e

Volume and Pressure: Boyle’s Law (OpenStax Chemistry 2e)

If we partially fill an airtight syringe with air, the syringe contains a specific amount of air at constant temperature, say 25 °C. If we slowly push in the plunger while keeping temperature constant, the gas in the syringe is compressed into a smaller volume and its pressure increases; if we pull out the plunger, the volume increases and the pressure decreases. This example of the effect of volume on the pressure of a given amount of a confined gas is true in general. Decreasing the volume of a contained gas will increase its pressure, and increasing its volume will decrease its pressure. In fact, if the volume increases by a certain factor, the pressure decreases by the same factor, and vice versa. Volume-pressure data for an air sample at room temperature are graphed in Figure 1.

Unlike the PT and VT relationships, pressure and volume are not directly proportional to each other. Instead, P and V exhibit inverse proportionality: Increasing the pressure results in a decrease of the volume of the gas. Mathematically this can be written:

with k being a constant. Graphically, this relationship is shown by the straight line that results when plotting the inverse of the pressure (1/P) versus the volume (V), or the inverse of volume (1/V)versus the pressure (P). Graphs with curved lines are difficult to read accurately at low or high values of the variables, and they are more difficult to use in fitting theoretical equations and parameters to experimental data. For those reasons, scientists often try to find a way to “linearize” their data. If we plot P versus V, we obtain a hyperbola.

This diagram shows two graphs. In a, a graph is shown with volume on the horizontal axis and pressure on the vertical axis. A curved line is shown on the graph showing a decreasing trend with a decreasing rate of change. In b, a graph is shown with volume on the horizontal axis and one divided by pressure on the vertical axis. A line segment, beginning at the origin of the graph, shows a positive, linear trend.
Figure 2. The relationship between pressure and volume is inversely proportional. (a) The graph of P vs. V is a hyperbola, whereas (b) the graph of (1/P) vs. V is linear. Source: OpenStax Chemistry 2e

The relationship between the volume and pressure of a given amount of gas at constant temperature was first published by the English natural philosopher Robert Boyle over 300 years ago. It is summarized in the statement now known as Boyle’s law: The volume of a given amount of gas held at constant temperature is inversely proportional to the pressure under which it is measured.


Flowers, P., Theopold, K., Langley, R., & Robinson, W. R. (2019, February 14). Chemistry 2e. Houston, Texas: OpenStax. Access for free at: https://openstax.org/books/chemistry-2e


Related Research

Research Article: MRI Findings of Otic and Sinus Barotrauma in Patients with Carbon Monoxide Poisoning during Hyperbaric Oxygen Therapy

Date Published: June 12, 2013 Publisher: Public Library of Science Author(s): Ping Wang, Xiao-Ming Zhang, Zhao-Hua Zhai, Pei-Ling Li, Samuel J. Lin. http://doi.org/10.1371/journal.pone.0065672 Abstract: To study the MRI findings of otic and sinus barotrauma in patients with carbon monoxide(CO) poisoning during hyperbaric oxygen (HBO) therapy and examine the discrepancies of otic and sinus abnormalities on MRI … Continue reading