The Solid State of Matter

Advertisements
Advertisements

Related Posts:


Solid Matter. Two images are shown and labeled, from left to right, “Crystalline” and “Amorphous.” The crystalline diagram shows many circles drawn in rows and stacked together tightly. The amorphous diagram shows many circles spread slightly apart and in no organized pattern.
Figure 1. The entities of a solid phase may be arranged in a regular, repeating pattern (crystalline solids) or randomly (amorphous). Source: OpenStax Chemistry 2e

The Solid State of Matter (OpenStax Chemistry 2e)

When most liquids are cooled, they eventually freeze and form crystalline solids, solids in which the atoms, ions, or molecules are arranged in a definite repeating pattern. It is also possible for a liquid to freeze before its molecules become arranged in an orderly pattern. The resulting materials are called amorphous solids or noncrystalline solids (or, sometimes, glasses). The particles of such solids lack an ordered internal structure and are randomly arranged (Figure 1).

Metals and ionic compounds typically form ordered, crystalline solids. Substances that consist of large molecules, or a mixture of molecules whose movements are more restricted, often form amorphous solids. For examples, candle waxes are amorphous solids composed of large hydrocarbon molecules. Some substances, such as silicon dioxide (shown in Figure 2), can form either crystalline or amorphous solids, depending on the conditions under which it is produced. Also, amorphous solids may undergo a transition to the crystalline state under appropriate conditions.

Two sets of molecules are shown. The first set of molecules contains five identical, hexagonal rings composed of alternating red and maroon spheres single bonded together and with a red spheres extending outward from each maroon sphere. The second set of molecules shows four rings with twelve sides each that are joined together. Each ring is composed of alternating red and maroon spheres single bonded together and with a red spheres extending outward from each maroon sphere.
Figure 2. (a) Silicon dioxide, SiO2, is abundant in nature as one of several crystalline forms of the mineral quartz. (b) Rapid cooling of molten SiO2 yields an amorphous solid known as “fused silica”. Source: OpenStax Chemistry 2e

Crystalline solids are generally classified according the nature of the forces that hold its particles together. These forces are primarily responsible for the physical properties exhibited by the bulk solids. The following sections provide descriptions of the major types of crystalline solids: ionic, metallic, covalent network, and molecular.

Ionic Solids

Ionic solids, such as sodium chloride and nickel oxide, are composed of positive and negative ions that are held together by electrostatic attractions, which can be quite strong (Figure 3). Many ionic crystals also have high melting points. This is due to the very strong attractions between the ions—in ionic compounds, the attractions between full charges are (much) larger than those between the partial charges in polar molecular compounds. This will be looked at in more detail in a later discussion of lattice energies. Although they are hard, they also tend to be brittle, and they shatter rather than bend. Ionic solids do not conduct electricity; however, they do conduct when molten or dissolved because their ions are free to move. Many simple compounds formed by the reaction of a metallic element with a nonmetallic element are ionic.

This figure shows large purple spheres bonded to smaller green spheres in an alternating pattern. The spheres are arranged in a cube.
Figure 3. Sodium chloride is an ionic solid. Source: OpenStax Chemistry 2e

Metallic Solids

Metallic solids such as crystals of copper, aluminum, and iron are formed by metal atoms Figure 4. The structure of metallic crystals is often described as a uniform distribution of atomic nuclei within a “sea” of delocalized electrons. The atoms within such a metallic solid are held together by a unique force known as metallic bonding that gives rise to many useful and varied bulk properties. All exhibit high thermal and electrical conductivity, metallic luster, and malleability. Many are very hard and quite strong. Because of their malleability (the ability to deform under pressure or hammering), they do not shatter and, therefore, make useful construction materials. The melting points of the metals vary widely. Mercury is a liquid at room temperature, and the alkali metals melt below 200 °C. Several post-transition metals also have low melting points, whereas the transition metals melt at temperatures above 1000 °C. These differences reflect differences in strengths of metallic bonding among the metals.

This figure shows large brown spheres arranged in a cube.
Figure 4. Copper is a metallic solid. Source: OpenStax Chemistry 2e

Covalent Network Solid

Covalent network solids include crystals of diamond, silicon, some other nonmetals, and some covalent compounds such as silicon dioxide (sand) and silicon carbide (carborundum, the abrasive on sandpaper). Many minerals have networks of covalent bonds. The atoms in these solids are held together by a network of covalent bonds, as shown in Figure 5. To break or to melt a covalent network solid, covalent bonds must be broken. Because covalent bonds are relatively strong, covalent network solids are typically characterized by hardness, strength, and high melting points. For example, diamond is one of the hardest substances known and melts above 3500 °C.

Four pairs of images are shown. In the first pair, a square box containing a black atom bonded to four other black atoms is shown above a structure composed of many black atoms, each bonded to four other black atoms, where one of the upper atoms is labeled “carbon” and the whole structure is labeled “diamond.” In the second pair, a square box containing a white atom bonded to four red atoms is shown above a structure composed of many white atoms, each bonded to four red atoms, where one of the red atoms is labeled “oxygen” and one of the white atoms is labeled “silicon.” The whole structure is labeled “silicon dioxide.” In the third pair, a square box containing a blue atom bonded to four white atoms is shown above a structure composed of many blue atoms, each bonded to four white atoms, where one of the blue atoms is labeled “carbon” and one of the white atoms is labeled “silicon.” The whole structure is labeled “silicon carbide.” In the fourth pair, a square box containing six black atoms bonded into a ring is shown above a structure composed of many rings, arranged into sheets layered one atop the other, where one of the black atoms is labeled “carbon.” The whole structure is labeled “graphite.”
Figure 5. A covalent crystal contains a three-dimensional network of covalent bonds, as illustrated by the structures of diamond, silicon dioxide, silicon carbide, and graphite. Graphite is an exceptional example, composed of planar sheets of covalent crystals that are held together in layers by noncovalent forces. Unlike typical covalent solids, graphite is very soft and electrically conductive. Source: OpenStax Chemistry 2e

Molecular Solid

Molecular solids, such as ice, sucrose (table sugar), and iodine, as shown in Figure 6, are composed of neutral molecules. The strengths of the attractive forces between the units present in different crystals vary widely, as indicated by the melting points of the crystals. Small symmetrical molecules (nonpolar molecules), such as H2, N2, O2, and F2, have weak attractive forces and form molecular solids with very low melting points (below −200 °C). Substances consisting of larger, nonpolar molecules have larger attractive forces and melt at higher temperatures. Molecular solids composed of molecules with permanent dipole moments (polar molecules) melt at still higher temperatures. Examples include ice (melting point, 0 °C) and table sugar (melting point, 185 °C).

Two images are shown and labeled “carbon dioxide” and “iodine.” The carbon dioxide structure is composed of molecules, each made up of one gray and two red atoms, stacked together into a cube. The image of iodine shows pairs of purple atoms arranged near one another, but not touching.
Figure 6. Carbon dioxide (CO2) consists of small, nonpolar molecules and forms a molecular solid with a melting point of −78 °C. Iodine (I2) consists of larger, nonpolar molecules and forms a molecular solid that melts at 114 °C. Source: OpenStax Chemistry 2e

Source:

Flowers, P., Theopold, K., Langley, R., & Robinson, W. R. (2019, February 14). Chemistry 2e. Houston, Texas: OpenStax. Access for free at: https://openstax.org/books/chemistry-2e

Advertisements
Advertisements

Related Research

Research Article: Stoichiometry, polarity, and organometallics in solid-phase extracted dissolved organic matter of the Elbe-Weser estuary

Date Published: September 5, 2018 Publisher: Public Library of Science Author(s): Kerstin B. Ksionzek, Jing Zhang, Kai-Uwe Ludwichowski, Dorothee Wilhelms-Dick, Scarlett Trimborn, Thomas Jendrossek, Gerhard Kattner, Boris P. Koch, Chon-Lin Lee. http://doi.org/10.1371/journal.pone.0203260 Abstract: Dissolved organic matter (DOM) is ubiquitous in natural waters and plays a central role in the biogeochemistry in riverine, estuarine and marine … Continue reading

Research Article: Fecal Transplants: What Is Being Transferred?

Date Published: July 12, 2016 Publisher: Public Library of Science Author(s): Diana P. Bojanova, Seth R. Bordenstein Abstract: Fecal transplants are increasingly utilized for treatment of recurrent infections (i.e., Clostridium difficile) in the human gut and as a general research tool for gain-of-function experiments (i.e., gavage of fecal pellets) in animal models. Changes observed in … Continue reading

Research Article: Evaluation of polarization rotation in the scattering responses from individual semiconducting oxide nanorods

Date Published: April 22, 2016 Publisher: AIP Publishing LLC Author(s): Daniel S. Choi, Manpreet Singh, Hebing Zhou, Marissa Milchak, Brian Monahan, Jong-in Hahm. http://doi.org/10.1063/1.4948267 Abstract: We investigate the interaction of visible light with the solid matters of semiconducting oxide nanorods (NRs) of zinc oxide (ZnO), indium tin oxide (ITO), and zinc tin oxide (ZTO) at … Continue reading

Research Article: Similar PAH Fate in Anaerobic Digesters Inoculated with Three Microbial Communities Accumulating Either Volatile Fatty Acids or Methane

Date Published: April 15, 2015 Publisher: Public Library of Science Author(s): Florence Braun, Jérôme Hamelin, Anaïs Bonnafous, Nadine Delgenès, Jean-Philippe Steyer, Dominique Patureau, Stephen J. Johnson. http://doi.org/10.1371/journal.pone.0125552 Abstract: Urban sludge produced on wastewater treatment plants is often contaminated by organic pollutants such as polycyclic aromatic hydrocarbons (PAH). Their removal under methanogenic conditions was already reported, … Continue reading