Enzyme Structure and Function

A diagram is shown of two possible interactions of an enzyme and a substrate. In a, which is labeled “Lock-and-key,” two diagrams are shown. The first shows a green wedge-like shape with two small depressions in the upper surface of similar size, but the depression on the left has a curved shape, and the depression on the right has a pointed shape. This green shape is labeled “Enzyme.” Just above this shape are two smaller, irregular, lavender shapes each with a projection from its lower surface. The lavender shape on the left has a curved projection which matches the shape of the depression on the left in the green shape below. This projection is shaded orange and has a curved arrow extending from in to the matching depression in the green shape below. Similarly, the lavender shape on the right has a projection with a pointed tip which matches the shape of the depression on the right in the green shape below. This projection is shaded orange and has a curved arrow extending from in to the matching depression in the green shape below. Two line segments extend from the depressions in the green shape to form an inverted V shape above the depressions. Above this and between the lavender shapes is the label, “Active site is proper shape.” The label “Substrates” is at the very top of the diagram with line segments extending to the two lavender shapes. To the right of this diagram is a second diagram showing the lavender shapes positioned next to each other, fit snugly into the depressions in the green shape, which is labeled “Enzyme.” Above this diagram is the label, “Substrate complex formed.” In b, which is labeled “Induced fit,” two diagrams are shown. The first shows a green wedge-like shape with two small depressions in the upper surface of similar size, but irregular shape. This green shape is labeled “Enzyme.” Just above this shape are two smaller irregular lavender shapes each with a projection from its lower surface. The lavender shape on the left has a curved projection. This projection is shaded orange and has a curved arrow extending from it to the irregular depression just below it in the green shape below. Similarly, the lavender shape on the right has a projection with a pointed tip. This projection is shaded orange and has a curved arrow extending from it to the irregular depression just below it in the green shape below. Two line segments extend from the depressions in the green shape to form an inverted V shape above the depressions. Above this and between the lavender shapes is the label, “Active site changes to fit.” The label, “Substrates” is at the very top of the diagram with line segments extending to the two lavender shapes. To the right of this diagram is a second diagram showing the purple shapes positioned next to each other, fit snugly into the depressions in the green shape, which is labeled “Enzyme.” Above this diagram is the label “Substrate complex formed.” The projections from the lavender shapes match the depression shapes in the green shape, resulting in a proper fit.
Figure 1. (a) According to the lock-and-key model, the shape of an enzyme’s active site is a perfect fit for the substrate. (b) According to the induced fit model, the active site is somewhat flexible, and can change shape in order to bond with the substrate. Source: OpenStax Chemistry 2e

Enzyme Structure and Function (OpenStax Chemistry 2e)

The study of enzymes is an important interconnection between biology and chemistry. Enzymes are usually proteins (polypeptides) that help to control the rate of chemical reactions between biologically important compounds, particularly those that are involved in cellular metabolism. Different classes of enzymes perform a variety of functions, as shown in Table 1.

Classes of Enzymes and Their Functions

ClassFunction
oxidoreductasesredox reactions
transferasestransfer of functional groups
hydrolaseshydrolysis reactions
lyasesgroup elimination to form double bonds
isomerasesisomerization
ligasesbond formation with ATP hydrolysis
Table 1

Enzyme molecules possess an active site, a part of the molecule with a shape that allows it to bond to a specific substrate (a reactant molecule), forming an enzyme-substrate complex as a reaction intermediate. There are two models that attempt to explain how this active site works. The most simplistic model is referred to as the lock-and-key hypothesis, which suggests that the molecular shapes of the active site and substrate are complementary, fitting together like a key in a lock. The induced fit hypothesis, on the other hand, suggests that the enzyme molecule is flexible and changes shape to accommodate a bond with the substrate. This is not to suggest that an enzyme’s active site is completely malleable, however. Both the lock-and-key model and the induced fit model account for the fact that enzymes can only bind with specific substrates, since in general a particular enzyme only catalyzes a particular reaction (Figure 1).

Source:

Flowers, P., Theopold, K., Langley, R., & Robinson, W. R. (2019, February 14). Chemistry 2e. Houston, Texas: OpenStax. Access for free at: https://openstax.org/books/chemistry-2e

Advertisements
Advertisements

Related Research

Research Article: Crystal structure of chloramphenicol-metabolizing enzyme EstDL136 from a metagenome

Date Published: January 15, 2019 Publisher: Public Library of Science Author(s): Sang-Hoon Kim, Pyeoung-Ann Kang, Keetae Han, Seon-Woo Lee, Sangkee Rhee, Monika Oberer. http://doi.org/10.1371/journal.pone.0210298 Abstract: Metagenomes often convey novel biological activities and therefore have gained considerable attention for use in biotechnological applications. Recently, metagenome-derived EstDL136 was found to possess chloramphenicol (Cm)-metabolizing features. Sequence analysis showed … Continue reading

Research Article: Function, Structure, and Stability of Enzymes Confined in Agarose Gels

Date Published: January 21, 2014 Publisher: Public Library of Science Author(s): Jeffrey Kunkel, Prashanth Asuri, Pratul K. Agarwal. http://doi.org/10.1371/journal.pone.0086785 Abstract: Research over the past few decades has attempted to answer how proteins behave in molecularly confined or crowded environments when compared to dilute buffer solutions. This information is vital to understanding in vivo protein behavior, … Continue reading

Research Article: Structure of an Enzyme-Derived Phosphoprotein Recognition Domain

Date Published: April 24, 2012 Publisher: Public Library of Science Author(s): Christopher A. Johnston, Chris Q. Doe, Kenneth E. Prehoda, Zhe Zhang. http://doi.org/10.1371/journal.pone.0036014 Abstract: Membrane Associated Guanylate Kinases (MAGUKs) contain a protein interaction domain (GKdom) derived from the enzyme Guanylate Kinase (GKenz). Here we show that GKdom from the MAGUK Discs large (Dlg) is a phosphoprotein … Continue reading

Research Article: Structure of Signaling Enzyme Reveals How Calcium Turns It On

Date Published: July 27, 2010 Publisher: Public Library of Science Author(s): Richard Robinson Abstract: None Partial Text: Calcium signaling is central to many of the most important cellular processes, from intracellular transport to memory. In most cases, calcium first joins up with a protein intermediary, calmodulin. With calcium on board, calmodulin (now called Ca2+/CaM) can … Continue reading

Advertisements
Advertisements