Ternary Acids and Bases

Advertisements
Advertisements

Related Posts:


ternary acids. A diagram is shown that includes four structural formulas for acids. A red, right pointing arrow is placed beneath the structures which is labeled “Increasing acid strength.” At the top left, the structure of Nitrous acid is provided. It includes an H atom to which an O atom with two unshared electron pairs is connected with a single bond to the right. A single bond extends to the right and slightly below to a N atom with one unshared electron pair. A double bond extends up and to the right from this N atom to an O atom which has two unshared electron pairs. To the upper right is a structure for Nitric acid. This structure differs from the previous structure in that the N atom is directly to the right of the first O atom and a second O atom with three unshared electron pairs is connected with a single bond below and to the right of the N atom which has no unshared electron pairs. At the lower left, an O atom with two unshared electron pairs is double bonded to its right to an S atom with a single unshared electron pair. An O atom with two unshared electron pairs is bonded above and an H atom is single bonded to this O atom. To the right of the S atom is a single bond to another O atom with two unshared electron pairs to which an H atom is single bonded. This structure is labeled “Sulfurous acid.” A similar structure which is labeled “Sulfuric acid” is placed in the lower right region of the figure. This structure differs in that an H atom is single bonded to the left of the first O atom, leaving it with two unshared electron pairs and a fourth O atom with two unshared electron pairs is double bonded beneath the S atom, leaving it with no unshared electron pairs.
Figure 1. As the oxidation number of the central atom E increases, the acidity also increases. Source: OpenStax Chemistry 2e

Ternary Acids and Bases (OpenStax Chemistry 2e)

Ternary compounds composed of hydrogen, oxygen, and some third element (“E”) may be structured as depicted in the image below. In these compounds, the central E atom is bonded to one or more O atoms, and at least one of the O atoms is also bonded to an H atom, corresponding to the general molecular formula OmE(OH)n. These compounds may be acidic, basic, or amphoteric depending on the properties of the central E atom. Examples of such compounds include sulfuric acid, O2S(OH)2, sulfurous acid, OS(OH)2, nitric acid, O2NOH, perchloric acid, O3ClOH, aluminum hydroxide, Al(OH)3, calcium hydroxide, Ca(OH)2, and potassium hydroxide, KOH:

If the central atom, E, has a low electronegativity, its attraction for electrons is low. Little tendency exists for the central atom to form a strong covalent bond with the oxygen atom, and bond a between the element and oxygen is more readily broken than bond b between oxygen and hydrogen. Hence bond a is ionic, hydroxide ions are released to the solution, and the material behaves as a base—this is the case with Ca(OH)2 and KOH. Lower electronegativity is characteristic of the more metallic elements; hence, the metallic elements form ionic hydroxides that are by definition basic compounds.

If, on the other hand, the atom E has a relatively high electronegativity, it strongly attracts the electrons it shares with the oxygen atom, making bond a relatively strongly covalent. The oxygen-hydrogen bond, bond b, is thereby weakened because electrons are displaced toward E. Bond b is polar and readily releases hydrogen ions to the solution, so the material behaves as an acid. High electronegativities are characteristic of the more nonmetallic elements. Thus, nonmetallic elements form covalent compounds containing acidic −OH groups that are called oxyacids.

Increasing the oxidation number of the central atom E also increases the acidity of an oxyacid because this increases the attraction of E for the electrons it shares with oxygen and thereby weakens the O-H bond. Sulfuric acid, H2SO4, or O2S(OH)2 (with a sulfur oxidation number of +6), is more acidic than sulfurous acid, H2SO3, or OS(OH)2 (with a sulfur oxidation number of +4). Likewise nitric acid, HNO3, or O2NOH (N oxidation number = +5), is more acidic than nitrous acid, HNO2, or ONOH (N oxidation number = +3). In each of these pairs, the oxidation number of the central atom is larger for the stronger acid (Figure 1).

Hydroxy compounds of elements with intermediate electronegativities and relatively high oxidation numbers (for example, elements near the diagonal line separating the metals from the nonmetals in the periodic table) are usually amphoteric. This means that the hydroxy compounds act as acids when they react with strong bases and as bases when they react with strong acids. The amphoterism of aluminum hydroxide, which commonly exists as the hydrate Al(H2O)3(OH)3, is reflected in its solubility in both strong acids and strong bases. In strong bases, the relatively insoluble hydrated aluminum hydroxide, Al(H2O)3(OH)3, is converted into the soluble ion, [Al(H2O)2(OH)4]−, by reaction with hydroxide ion:

In this reaction, a proton is transferred from one of the aluminum-bound H2O molecules to a hydroxide ion in solution. The Al(H2O)3(OH)3 compound thus acts as an acid under these conditions. On the other hand, when dissolved in strong acids, it is converted to the soluble ion [Al(H2O)6]3+ by reaction with hydronium ion:

In this case, protons are transferred from hydronium ions in solution to Al(H2O)3(OH)3, and the compound functions as a base.

Source:

Flowers, P., Theopold, K., Langley, R., & Robinson, W. R. (2019, February 14). Chemistry 2e. Houston, Texas: OpenStax. Access for free at: https://openstax.org/books/chemistry-2e

Advertisements
Advertisements

Related Research

Research Article: Structural Insights into the Dual Strategy of Recognition by Peptidoglycan Recognition Protein, PGRP-S: Structure of the Ternary Complex of PGRP-S with Lipopolysaccharide and Stearic Acid

Date Published: January 9, 2013 Publisher: Public Library of Science Author(s): Pradeep Sharma, Divya Dube, Mau Sinha, Savita Yadav, Punit Kaur, Sujata Sharma, Tej P. Singh, Maria Gasset. http://doi.org/10.1371/journal.pone.0053756 Abstract: Peptidoglycan recognition proteins (PGRPs) are part of the innate immune system. The 19 kDa Short PGRP (PGRP-S) is one of the four mammalian PGRPs. The concentration … Continue reading

Research Article: Quantitative and Selective Analysis of Feline Growth Related Proteins Using Parallel Reaction Monitoring High Resolution Mass Spectrometry

Date Published: December 1, 2016 Publisher: Public Library of Science Author(s): Mårten Sundberg, Emma M. Strage, Jonas Bergquist, Bodil S. Holst, Margareta Ramström, René P. Zahedi. http://doi.org/10.1371/journal.pone.0167138 Abstract: Today immunoassays are widely used in veterinary medicine, but lack of species specific assays often necessitates the use of assays developed for human applications. Mass spectrometry (MS) … Continue reading

Research Article: Robustness in Glyoxylate Bypass Regulation

Date Published: March 6, 2009 Publisher: Public Library of Science Author(s): Guy Shinar, Joshua D. Rabinowitz, Uri Alon, Jason A. Papin Abstract: The glyoxylate bypass allows Escherichia coli to grow on carbon sources with only two carbons by bypassing the loss of carbons as CO2 in the tricarboxylic acid cycle. The flux toward this bypass … Continue reading

Research Article: Bioreducible Liposomes for Gene Delivery: From the Formulation to the Mechanism of Action

Date Published: October 15, 2010 Publisher: Public Library of Science Author(s): Gabriele Candiani, Daniele Pezzoli, Laura Ciani, Roberto Chiesa, Sandra Ristori, Dimitris Fatouros. http://doi.org/10.1371/journal.pone.0013430 Abstract: A promising strategy to create stimuli-responsive gene delivery systems is to exploit the redox gradient between the oxidizing extracellular milieu and the reducing cytoplasm in order to disassemble DNA/cationic lipid complexes … Continue reading