Relating Reaction Mechanisms to Rate Laws

Advertisements
Advertisements

Related Posts:


A photo is shown of cattle passing through a narrow chute into a holding pen. A person directs them through the gate with a long white and red pole.
Figure 1. A cattle chute is a nonchemical example of a rate-determining step. Cattle can only be moved from one holding pen to another as quickly as one animal can make its way through the chute. (credit: Loren Kerns)

Relating Reaction Mechanisms to Rate Laws (OpenStax Chemistry 2e)

It’s often the case that one step in a multistep reaction mechanism is significantly slower than the others. Because a reaction cannot proceed faster than its slowest step, this step will limit the rate at which the overall reaction occurs. The slowest step is therefore called the rate-limiting step (or rate-determining step) of the reaction.

Rate laws may be derived directly from the chemical equations for elementary reactions. This is not the case, however, for ordinary chemical reactions. The balanced equations most often encountered represent the overall change for some chemical system, and very often this is the result of some multistep reaction mechanisms. In every case, the rate law must be determined from experimental data and the reaction mechanism subsequently deduced from the rate law (and sometimes from other data). The reaction of NO2 and CO provides an illustrative example:

For temperatures above 225 °C, the rate law has been found to be:

The reaction is first order with respect to NO2 and first-order with respect to CO. This is consistent with a single-step bimolecular mechanism and it is possible that this is the mechanism for this reaction at high temperatures.

At temperatures below 225 °C, the reaction is described by a rate law that is second order with respect to NO2:

This rate law is not consistent with the single-step mechanism, but is consistent with the following two-step mechanism:

The rate-determining (slower) step gives a rate law showing second-order dependence on the NO2 concentration, and the sum of the two equations gives the net overall reaction.

In general, when the rate-determining (slower) step is the first step in a mechanism, the rate law for the overall reaction is the same as the rate law for this step. However, when the rate-determining step is preceded by a step involving a rapidly reversible reaction the rate law for the overall reaction may be more difficult to derive.

As discussed in several chapters of this text, a reversible reaction is at equilibrium when the rates of the forward and reverse processes are equal. Consider the reversible elementary reaction in which NO dimerizes to yield an intermediate species N2O2. When this reaction is at equilibrium:

This expression may be rearranged to express the concentration of the intermediate in terms of the reactant NO:

Since intermediate species concentrations are not used in formulating rate laws for overall reactions, this approach is sometimes necessary, as illustrated in the following example exercise.

Source:

Flowers, P., Theopold, K., Langley, R., & Robinson, W. R. (2019, February 14). Chemistry 2e. Houston, Texas: OpenStax. Access for free at: https://openstax.org/books/chemistry-2e

Advertisements
Advertisements

Related Research

Research Article: Inferring the Rate-Length Law of Protein Folding

Date Published: December 5, 2013 Publisher: Public Library of Science Author(s): Thomas J. Lane, Vijay S. Pande, Pratul K. Agarwal. http://doi.org/10.1371/journal.pone.0078606 Abstract: We investigate the rate-length scaling law of protein folding, a key undetermined scaling law in the analytical theory of protein folding. Available data yield statistically significant evidence for the existence of a rate-length … Continue reading

Research Article: Do More Hospital Beds Lead to Higher Hospitalization Rates? A Spatial Examination of Roemer’s Law

Date Published: February 13, 2013 Publisher: Public Library of Science Author(s): Paul L. Delamater, Joseph P. Messina, Sue C. Grady, Vince WinklerPrins, Ashton M. Shortridge, Richard Fielding. http://doi.org/10.1371/journal.pone.0054900 Abstract: Roemer’s Law, a widely cited principle in health care policy, states that hospital beds that are built tend to be used. This simple but powerful expression has … Continue reading

Research Article: Modeling of Mitochondria Bioenergetics Using a Composable Chemiosmotic Energy Transduction Rate Law: Theory and Experimental Validation

Date Published: September 8, 2011 Publisher: Public Library of Science Author(s): Ivan Chang, Margit Heiske, Thierry Letellier, Douglas Wallace, Pierre Baldi, Vladimir N. Uversky. http://doi.org/10.1371/journal.pone.0014820 Abstract: Mitochondrial bioenergetic processes are central to the production of cellular energy, and a decrease in the expression or activity of enzyme complexes responsible for these processes can result in energetic … Continue reading

Research Article: The Protein Cost of Metabolic Fluxes: Prediction from Enzymatic Rate Laws and Cost Minimization

Date Published: November 3, 2016 Publisher: Public Library of Science Author(s): Elad Noor, Avi Flamholz, Arren Bar-Even, Dan Davidi, Ron Milo, Wolfram Liebermeister, Daniel A Beard Abstract: Bacterial growth depends crucially on metabolic fluxes, which are limited by the cell’s capacity to maintain metabolic enzymes. The necessary enzyme amount per unit flux is a major … Continue reading