Reproductive Cloning


Related Posts:

To clone Dolly the sheep, a Scottish Blackface sheep was used as a cytoplasmic donor. Eggs from this sheep were extracted, and the nucleus removed. A Finn Dorset sheep was used as the nuclear donor. Nuclei were extracted from mammary cells, and direct electric current was used to fuse the nuclear D N A with the donor egg. The egg was then allowed to divide to the blastocyst stage, in which a sphere of cells contains a cluster of cells on one side. The blastocyst was implanted in a surrogate mother, resulting in Dolly the sheep.
Dolly the sheep was the first mammal to be cloned. To create Dolly, they removed the nucleus from a donor egg cell. They then introduced the nucleus from a second sheep into the cell, which divided to the blastocyst stage before they implanted it in a surrogate mother. (credit: modification of work by “Squidonius”/Wikimedia Commons)

OpenStax Biology 2e

Reproductive cloning is a method scientists use to clone or identically copy an entire multicellular organism. Most multicellular organisms undergo reproduction by sexual means, which involves genetic hybridization of two individuals (parents), making it impossible to generate an identical copy or a clone of either parent. Recent advances in biotechnology have made it possible to artificially induce mammal asexual reproduction in the laboratory.

Parthenogenesis, or “virgin birth,” occurs when an embryo grows and develops without egg fertilization. This is a form of asexual reproduction. An example of parthenogenesis occurs in species in which the female lays an egg and if the egg is fertilized, it is a diploid egg and the individual develops into a female. If the egg is not fertilized, it remains a haploid egg and develops into a male. The unfertilized egg is a parthenogenic, or virgin egg. Some insects and reptiles lay parthenogenic eggs that can develop into adults.

Sexual reproduction requires two cells. When the haploid egg and sperm cells fuse, a diploid zygote results. The zygote nucleus contains the genetic information to produce a new individual. However, early embryonic development requires the cytoplasmic material contained in the egg cell. This idea forms the basis for reproductive cloning. Therefore, if we replace the egg cell’s haploid nucleus with a diploid nucleus from the cell of any individual of the same species (a donor), it will become a zygote that is genetically identical to the donor. Somatic cell nuclear transfer is the technique of transferring a diploid nucleus into an enucleated egg. Scientists can use it for either therapeutic cloning or reproductive cloning.

The first cloned animal was Dolly, a sheep born in 1996. The reproductive cloning success rate at the time was very low. Dolly lived for seven years and died of respiratory complications. There is speculation that because the cell DNA belongs to an older individual, DNA’s age may affect a cloned individual’s life expectancy. Since Dolly, scientists have cloned successfully several animals such as horses, bulls, and goats, although these animals often exhibit facial, limb, and cardiac abnormalities. There have been attempts at producing cloned human embryos as sources of embryonic stem cells for therapeutic purposes. Therapeutic cloning produces stem cells in the attempt to remedy detrimental diseases or defects (unlike reproductive cloning, which aims to reproduce an organism). Still, some have met therapeutic cloning efforts with resistance because of bioethical considerations.


Clark, M., Douglas, M., Choi, J. Biology 2e. Houston, Texas: OpenStax. Access for free at: