Research Article: A Nucleic-Acid Hydrolyzing Single Chain Antibody Confers Resistance to DNA Virus Infection in HeLa Cells and C57BL/6 Mice

Date Published: June 26, 2014

Publisher: Public Library of Science

Author(s): Gunsup Lee, Jaelim Yu, Seungchan Cho, Sung-June Byun, Dae Hyun Kim, Taek-Kyun Lee, Myung-Hee Kwon, Sukchan Lee, Dirk P. Dittmer.

http://doi.org/10.1371/journal.ppat.1004208

Abstract

Viral protein neutralizing antibodies have been developed but they are limited only to the targeted virus and are often susceptible to antigenic drift. Here, we present an alternative strategy for creating virus-resistant cells and animals by ectopic expression of a nucleic acid hydrolyzing catalytic 3D8 single chain variable fragment (scFv), which has both DNase and RNase activities. HeLa cells (SCH7072) expressing 3D8 scFv acquired significant resistance to DNA viruses. Virus challenging with Herpes simplex virus (HSV) in 3D8 scFv transgenic cells and fluorescence resonance energy transfer (FRET) assay based on direct DNA cleavage analysis revealed that the induced resistance in HeLa cells was acquired by the nucleic acid hydrolyzing catalytic activity of 3D8 scFv. In addition, pseudorabies virus (PRV) infection in WT C57BL/6 mice was lethal, whereas transgenic mice (STG90) that expressed high levels of 3D8 scFv mRNA in liver, muscle, and brain showed a 56% survival rate 5 days after PRV intramuscular infection. The antiviral effects against DNA viruses conferred by 3D8 scFv expression in HeLa cells as well as an in vivo mouse system can be attributed to the nuclease activity that inhibits viral genome DNA replication in the nucleus and/or viral mRNA translation in the cytoplasm. Our results demonstrate that the nucleic-acid hydrolyzing activity of 3D8 scFv confers viral resistance to DNA viruses in vitro in HeLa cells and in an in vivo mouse system.

Partial Text

Viruses are pathogenic agents that cause potentially devastating diseases such as the flu, hepatitis, poliomyelitis, acquired immunodeficiency syndrome (AIDS), severe acute respiratory syndrome (SARS), avian influenza, and foot-and-mouse disease [1], [2], [3]. Many antiviral drug studies have been based on a functional analysis of viral genes and an understanding of the virus life cycle. McFarland and Hill (1987) showed successful vaccination of mice and pigs with a mutant PRV thymidine kinase [4]. Qing Ge also demonstrated that nucleocapsid siRNA or a component of the RNA transcriptase (PA) is a good antiviral drug to protect against influenza virus by inhibiting viral RNA transcription with siRNAs [5]. In addition, acyclovir, which is the best antiviral agent against HSV-1, is a nucleotide analogue that shows an antiviral effect by inhibiting DNA replication [6]. However, commercially-developed antiviral drugs such as viral DNA polymerases, viral reverse transcriptases, and neuraminidase inhibitors target one or two viruses [7], [8], [9], [10], [11]. Thus, a new strategy is needed to prepare for outbreaks caused by new viruses or new mutant viruses because of the high mutation rates of viral genomes and recombination events among closely-related viruses [12], [13].

 

Source:

http://doi.org/10.1371/journal.ppat.1004208

 

0 0 vote
Article Rating
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments