Research Article: Anticipated burden and mitigation of carbon-dioxide-induced nutritional deficiencies and related diseases: A simulation modeling study

Date Published: July 3, 2018

Publisher: Public Library of Science

Author(s): Christopher Weyant, Margaret L. Brandeau, Marshall Burke, David B. Lobell, Eran Bendavid, Sanjay Basu

Abstract: BackgroundRising atmospheric carbon dioxide concentrations are anticipated to decrease the zinc and iron concentrations of crops. The associated disease burden and optimal mitigation strategies remain unknown. We sought to understand where and to what extent increasing carbon dioxide concentrations may increase the global burden of nutritional deficiencies through changes in crop nutrient concentrations, and the effects of potential mitigation strategies.Methods and findingsFor each of 137 countries, we incorporated estimates of climate change, crop nutrient concentrations, dietary patterns, and disease risk into a microsimulation model of zinc and iron deficiency. These estimates were obtained from the Intergovernmental Panel on Climate Change, US Department of Agriculture, Statistics Division of the Food and Agriculture Organization of the United Nations, and Global Burden of Disease Project, respectively. In the absence of increasing carbon dioxide concentrations, we estimated that zinc and iron deficiencies would induce 1,072.9 million disability-adjusted life years (DALYs) globally over the period 2015 to 2050 (95% credible interval [CrI]: 971.1–1,167.7). In the presence of increasing carbon dioxide concentrations, we estimated that decreasing zinc and iron concentrations of crops would induce an additional 125.8 million DALYs globally over the same period (95% CrI: 113.6–138.9). This carbon-dioxide-induced disease burden is projected to disproportionately affect nations in the World Health Organization’s South-East Asia and African Regions (44.0 and 28.5 million DALYs, respectively), which already have high existing disease burdens from zinc and iron deficiencies (364.3 and 299.5 million DALYs, respectively), increasing global nutritional inequalities. A climate mitigation strategy such as the Paris Agreement (an international agreement to keep global temperatures within 2°C of pre-industrial levels) would be expected to avert 48.2% of this burden (95% CrI: 47.8%–48.5%), while traditional public health interventions including nutrient supplementation and disease control programs would be expected to avert 26.6% of the burden (95% CrI: 23.8%–29.6%). Of the traditional public health interventions, zinc supplementation would be expected to avert 5.5%, iron supplementation 15.7%, malaria mitigation 3.2%, pneumonia mitigation 1.6%, and diarrhea mitigation 0.5%. The primary limitations of the analysis include uncertainty regarding how food consumption patterns may change with climate, how disease mortality rates will change over time, and how crop zinc and iron concentrations will decline from those at present to those in 2050.ConclusionsEffects of increased carbon dioxide on crop nutrient concentrations are anticipated to exacerbate inequalities in zinc and iron deficiencies by 2050. Proposed Paris Agreement strategies are expected to be more effective than traditional public health measures to avert the increased inequality.

Partial Text: Increasing atmospheric carbon dioxide concentrations are anticipated to affect public health through increased unsafe weather events, extreme heat, air pollution, and allergen and disease vector exposure [1]. Increasing carbon dioxide concentrations are also anticipated to reduce the concentrations of zinc and iron in many agricultural crops, particularly C3 plants, which rely solely on C3 carbon fixation and include common rice and wheat varieties; C3 plants constitute 95% of terrestrial plants, account for over half of global caloric consumption, and serve as the primary source of dietary zinc and iron for populations at highest risk of nutritional deficiencies [2–5]. The empirical observation of lowered zinc and iron concentrations under elevated carbon dioxide is well established, although the mechanisms are not yet well understood and likely relate in part to changes in crop transpiration [2,5,6]. Zinc and iron deficiencies, in turn, increase the risk of infections, diarrhea, and anemia [7,8]. It remains unclear, however, where and to what degree increasing carbon dioxide concentrations may increase the global burden of nutritional deficiencies, and which strategies may best mitigate the increase. An active area of public health policy debate is whether direct climate change mitigation strategies, such as the Paris Agreement, will be sufficient or comparable to traditional public health measures to combat the complications of carbon-dioxide-induced zinc and iron deficiencies—particularly supplementation and disease control programs to combat the heightened risk of infections, diarrhea, and anemia [9].

Carbon-dioxide-induced reductions in zinc and iron concentrations among crops are anticipated, by our model, to lead to an additional 125.8 million DALYs globally over the period 2015 to 2050. A disproportionate burden of these DALYs is anticipated to affect countries with high existing burdens from zinc and iron deficiencies, thereby increasing existing global inequalities in nutritional deficiency by disproportionately affecting South-East Asia and Africa.

Source:

http://doi.org/10.1371/journal.pmed.1002586

 

Leave a Reply

Your email address will not be published.