Research Article: Application of Soft Tissue Artifact Compensation Using Displacement Dependency between Anatomical Landmarks and Skin Markers

Date Published: July 19, 2012

Publisher: Hindawi Publishing Corporation

Author(s): Taebeum Ryu.

http://doi.org/10.1155/2012/123713

Abstract

Soft tissue artifact is known to be one of the main sources of errors in motion analysis by means of stereophotogrammetry. Among many approaches to reduce such errors, one is to estimate the position of anatomical landmarks during a motion with joint angle or displacement of skin markers, which is the so-called compensation method of anatomical landmarks. The position of anatomical landmarks was modeled from the data of the so-called dynamic calibration, in which anatomical landmark positions are calibrated in an ad hoc motion. This study aimed to apply the compensation methods with joint angle and skin marker displacement to three lower extremity motions (walking, sit-to-stand/stand-to-sit, and step up/down) in ten healthy males and compare their reliability. To compare the methods, two sets of kinematic variables were calculated using two different marker clusters, and the difference was obtained. Results showed that the compensation method with skin marker displacement had less differences by 30–60% compared to without compensation. In addition, it had significantly less difference in some kinematic variables (7 of 18) by 25–40% compared to the compensation method with joint angle.

Partial Text

Skin marker-based stereophotogrammetry is the most commonly used technique to analyze motions, despite significant errors due to the deformation of soft tissues such as skin and muscle. The displacement of skin markers relative to the underlying bones is called soft tissue artifact (STA), and it is responsible for errors in motion analysis. Skin marker displacement can be as much as 40 mm in the lower extremities [1, 2]. Error in computed angle due to STA ranges from 10° to 20° and is especially significant in abduction/adduction and internal/external rotation motions [1, 3, 4].

Both anatomical landmark compensation methods (with skin marker displacement and joint angle) showed good reliability in real lower extremity motions. In the study, differences between two marker clusters for the hip and knee kinematic variables (all but hip antero-posterior motion) were significantly reduced by 30–60% by anatomical landmark compensation with skin marker displacement compared to that without compensation. Reduction of the differences by anatomical landmark compensation with joint angle ranged from 10 to 60%.

 

Source:

http://doi.org/10.1155/2012/123713

 

Leave a Reply

Your email address will not be published.