**Date Published:** April 3, 2018

**Publisher:** Springer International Publishing

**Author(s):** S. Pandiselvi, R. Raja, Jinde Cao, G. Rajchakit, Bashir Ahmad.

http://doi.org/10.1186/s13662-018-1569-z

**Abstract**

**This work predominantly labels the problem of approximation of state variables for discrete-time stochastic genetic regulatory networks with leakage, distributed, and probabilistic measurement delays. Here we design a linear estimator in such a way that the absorption of mRNA and protein can be approximated via known measurement outputs. By utilizing a Lyapunov–Krasovskii functional and some stochastic analysis execution, we obtain the stability formula of the estimation error systems in the structure of linear matrix inequalities under which the estimation error dynamics is robustly exponentially stable. Further, the obtained conditions (in the form of LMIs) can be effortlessly solved by some available software packages. Moreover, the specific expression of the desired estimator is also shown in the main section. Finally, two mathematical illustrative examples are accorded to show the advantage of the proposed conceptual results.**

**Partial Text**

A gene is a physical structure made up of DNA, and most of the genes hold the data which is required to make molecules called as proteins. In the modern years, research in genetic regulatory networks (GRNs) has gained significance in both biological and bio-medical sciences, and a huge number of tremendous results have been issued. Distinct kinds of computational models have been applied to propagate the behaviors of GRNs; see, for instance, the Bayesian network models, the Petri net models, the Boolean models, and the differential equation models. Surrounded by the indicated models, the differential equation models describe the rate of change in the concentration of gene production, such as mRNAs and proteins, as constant values, whereas the other models do not have such a basis.

Notations: Throughout the paper, documentclass[12pt]{minimal}

usepackage{amsmath}

usepackage{wasysym}

usepackage{amsfonts}

usepackage{amssymb}

usepackage{amsbsy}

usepackage{mathrsfs}

usepackage{upgreek}

setlength{oddsidemargin}{-69pt}

begin{document}$mathit{naturals}^{+}$end{document}naturals+ refers to the position for the set of nonnegative integers; documentclass[12pt]{minimal}

usepackage{amsmath}

usepackage{wasysym}

usepackage{amsfonts}

usepackage{amssymb}

usepackage{amsbsy}

usepackage{mathrsfs}

usepackage{upgreek}

setlength{oddsidemargin}{-69pt}

begin{document}$mathbb{R}^{n}$end{document}Rn indicates the n-dimensional Euclidean space. The superscript “T” acts as the matrix transposition. The code documentclass[12pt]{minimal}

usepackage{amsmath}

usepackage{wasysym}

usepackage{amsfonts}

usepackage{amssymb}

usepackage{amsbsy}

usepackage{mathrsfs}

usepackage{upgreek}

setlength{oddsidemargin}{-69pt}

begin{document}$Xgeq Y$end{document}X≥Y (each documentclass[12pt]{minimal}

usepackage{amsmath}

usepackage{wasysym}

usepackage{amsfonts}

usepackage{amssymb}

usepackage{amsbsy}

usepackage{mathrsfs}

usepackage{upgreek}

setlength{oddsidemargin}{-69pt}

begin{document}$X>Y$end{document}X>Y), where X and Y are symmetric matrices, means that documentclass[12pt]{minimal}

usepackage{amsmath}

usepackage{wasysym}

usepackage{amsfonts}

usepackage{amssymb}

usepackage{amsbsy}

usepackage{mathrsfs}

usepackage{upgreek}

setlength{oddsidemargin}{-69pt}

begin{document}$X-Y$end{document}X−Y is positive semi-definitive (respectively positive definite). I means the identity matrix with consistent dimension. The symbol “∗” denotes the term symmetry. In addition, documentclass[12pt]{minimal}

usepackage{amsmath}

usepackage{wasysym}

usepackage{amsfonts}

usepackage{amssymb}

usepackage{amsbsy}

usepackage{mathrsfs}

usepackage{upgreek}

setlength{oddsidemargin}{-69pt}

begin{document}$E{cdot}$end{document}E{⋅} denotes the expectation operator. documentclass[12pt]{minimal}

usepackage{amsmath}

usepackage{wasysym}

usepackage{amsfonts}

usepackage{amssymb}

usepackage{amsbsy}

usepackage{mathrsfs}

usepackage{upgreek}

setlength{oddsidemargin}{-69pt}

begin{document}$L_{2}[0,infty)$end{document}L2[0,∞) is the amplitude of square-integrable vector functions over documentclass[12pt]{minimal}

usepackage{amsmath}

usepackage{wasysym}

usepackage{amsfonts}

usepackage{amssymb}

usepackage{amsbsy}

usepackage{mathrsfs}

usepackage{upgreek}

setlength{oddsidemargin}{-69pt}

begin{document}$[0,infty)$end{document}[0,∞). documentclass[12pt]{minimal}

usepackage{amsmath}

usepackage{wasysym}

usepackage{amsfonts}

usepackage{amssymb}

usepackage{amsbsy}

usepackage{mathrsfs}

usepackage{upgreek}

setlength{oddsidemargin}{-69pt}

begin{document}$|cdot|$end{document}|⋅| denotes the Euclidean vector norm. Matrices, if not absolutely specified, are affected to have compatible dimensions.

In this part, we first introduce a sufficient condition under which the augmented system (8) is robustly mean-square exponentially stable with the exogenous disturbance signals documentclass[12pt]{minimal}

usepackage{amsmath}

usepackage{wasysym}

usepackage{amsfonts}

usepackage{amssymb}

usepackage{amsbsy}

usepackage{mathrsfs}

usepackage{upgreek}

setlength{oddsidemargin}{-69pt}

begin{document}$v_{x}(k)=0$end{document}vx(k)=0 and documentclass[12pt]{minimal}

usepackage{amsmath}

usepackage{wasysym}

usepackage{amsfonts}

usepackage{amssymb}

usepackage{amsbsy}

usepackage{mathrsfs}

usepackage{upgreek}

setlength{oddsidemargin}{-69pt}

begin{document}$v_{y}(k)=0$end{document}vy(k)=0.

In this part, two mathematical examples with simulations are provided to show the effectiveness of the proposed robust state estimator.

In this paper, we have studied the approximation concern for the discrete-time stochastic GRNs with the leakage delays, distributed delays, and probabilistic measurement delays into the problem and modeled the robust documentclass[12pt]{minimal}

usepackage{amsmath}

usepackage{wasysym}

usepackage{amsfonts}

usepackage{amssymb}

usepackage{amsbsy}

usepackage{mathrsfs}

usepackage{upgreek}

setlength{oddsidemargin}{-69pt}

begin{document}$H_{infty}$end{document}H∞ state estimator for a class of discrete-time stochastic GRNs. Here, the probabilistic measurement delays, which narrate the binary shifting sequence, are satisfied by the conditional probability distribution. So, the crisis of parameter uncertainties, including errors, stochastic disturbance, leakage delays, distributed delays, and the activation function of the addressed GRNs, is identified by sector-bounded nonlinearities. By applying the Lyapunov stability theory and stochastic analysis techniques, sufficient conditions are first entrenched to assure the presence of the desired estimators in terms of a linear matrix inequality (LMI). These circumstances are reliant on both the lower and upper bounds of time-varying delays. Again, the absolute expression of the desired estimator is demonstrated to assure the estimation error dynamics to be robustly exponentially stable in the mean square for the consigned system. Lastly, numerical simulations have been utilized to illustrate the suitability and usefulness of our advanced theoretical results.

Source:

http://doi.org/10.1186/s13662-018-1569-z