Research Article: Atmospheric Pressure and Onset of Episodes of Menière’s Disease – A Repeated Measures Study

Date Published: April 20, 2016

Publisher: Public Library of Science

Author(s): Robert Gürkov, Ralf Strobl, Nina Heinlin, Eike Krause, Bernhard Olzowy, Christina Koppe, Eva Grill, Berthold Langguth.


External changes of air pressure are transmitted to the middle and inner ear and may be used therapeutically in Menière’s disease, one of the most common vertigo disorders. We analyzed the possible relationship of atmospheric pressure and other meteorological parameters with the onset of MD vertigo episodes in order to determine whether atmospheric pressure changes play a role in the occurrence of MD episodes.

Patients of a tertiary outpatient dizziness clinic diagnosed with MD were asked to keep a daily vertigo diary to document MD episodes (2004–2009). Local air pressure, absolute temperature and dew point temperature were acquired on an hourly basis. Change in meteorological parameters was conceptualized as the maximum difference in a 24 hour time frame preceding each day. Effects were estimated using additive mixed models with a random participant effect. We included lagged air parameters, age, sex, weekday and season in the model.

A total of 56 persons (59% female) with mean age 54 years were included. Mean follow-up time was 267 days. Persons experienced on average 10.3 episodes during the observation period (median 8). Age and change in air pressure were significantly associated with vertigo onset risk (Odds Ratio = 0.979 and 1.010). We could not show an effect of sex, weekday, season, air temperature, and dew point temperature.

Change in air pressure was significantly associated with onset of MD episodes, suggesting a potential triggering mechanism in the inner ear. MD patients may possibly use air pressure changes as an early warning system for vertigo attacks in the future.

Partial Text

Menière’s Disease (MD) is defined as the idiopathic syndrome of endolymphatic hydrops, characterized by sudden spells of rotatory vertigo and hearing loss, tinnitus and aural pressure, caused by a distension of the endolymphatic space of the inner ear. With a prevalence of 200 to 500 per 100.000 [1, 2], it is a rather common inner ear disorder and causes a considerable socioeconomic burden due to its chronic and incurable nature.

To our knowledge this is the first study to show a significant association between atmospheric pressure changes and the probability of the onset of an episode of Menière’s Disease. Any ambient pressure increase raised the probability for an episode during the following day. This result was independent of other meteorological parameters such as temperature and dew point.

Our study found a significant correlation between an increase in atmospheric pressure and the probability of an MD episode onset on the next day. On the basis of this finding, it is conceivable to develop a warning system for MD patients which could help them in planning their activities for the next day, coping with this incurable disease and reducing their fear of the next unpredictable vertigo episode. Furthermore, our findings support the notion that MD patients suffer from a reduced ability of their inner ear to maintain pressure homeostasis when challenged with atmospheric pressure increases. Therefore future research efforts to elucidate the mechanisms of inner ear pressure homeostasis are warranted in order to ultimately decipher the pathophysiology of MD and identify targets for therapeutic interventions.