Research Article: Chlamydia trachomatis ompA Variants in Trachoma: What Do They Tell Us?

Date Published: September 24, 2008

Publisher: Public Library of Science

Author(s): Aura A. Andreasen, Matthew J. Burton, Martin J. Holland, Spencer Polley, Nkoyo Faal, David C.W. Mabey, Robin L. Bailey, Julius Schachter

Abstract: BackgroundTrachoma, caused by Chlamydia trachomatis (Ct), is the leading infectious cause of blindness. Sequence-based analysis of the multiple strains typically present in endemic communities may be informative for epidemiology, transmission, response to treatment, and understanding the host response.MethodsConjunctival and nasal samples from a Gambian community were evaluated before and 2 months after mass azithromycin treatment. Samples were tested for Ct by Amplicor, with infection load determined by quantitative PCR (qPCR). ompA sequences were determined and their diversity analysed using frequency-based tests of neutrality.ResultsNinety-five of 1,319 (7.2%) individuals from 14 villages were infected with Ct at baseline. Two genovars (A and B) and 10 distinct ompA genotypes were detected. Two genovar A variants (A1 and A2) accounted for most infections. There was an excess of rare ompA mutations, not sustained in the population. Post-treatment, 76 (5.7%) individuals had Ct infection with only three ompA genotypes present. In 12 of 14 villages, infection had cleared, while in two it increased, probably due to mass migration. Infection qPCR loads associated with infection were significantly greater for A1 than for A2. Seven individuals had concurrent ocular and nasal infection, with divergent genotypes in five.ConclusionsThe number of strains was substantially reduced after mass treatment. One common strain was associated with higher infection loads. Discordant genotypes in concurrent infection may indicate distinct infections at ocular and nasal sites. Population genetic analysis suggests the fleeting appearance of rare multiple ompA variants represents purifying selection rather than escape variants from immune pressure. Genotyping systems accessing extra-ompA variation may be more informative.

Partial Text: Trachoma is the leading infectious cause of blindness worldwide [1]. Repeated infection by Chlamydia trachomatis provokes chronic follicular conjunctivitis (clinically active trachoma), which leads to conjunctival scarring, entropion, trichiasis and ultimately blinding corneal opacification. Trachoma is a major public health problem affecting some of the world’s poorest regions. Current estimates indicate 84 million have active trachoma, with 7.6 million visually impaired from trachomatous corneal opacification [2]. The World Health Organization is leading a global effort to control blinding trachoma through the implementation of the SAFE Strategy: Surgery for trichiasis, Antibiotics to reduce the burden of chlamydial infection, and face washing and environmental improvements to limit transmission [3].

In this study, 972 bp sequences comprising almost the entire C.trachomatis ompA gene were determined in samples from infected individuals in a trachoma endemic area. Previous trachoma studies have sequenced primarily VS regions: variation in the interspersing ‘conserved’ segments is recognised but not usually examined at the pathogen population level. All variants were confirmed with double pass sequencing methods: dubious calls on the chromatogram were all clarified by resequencing. We discuss the utility of ompA genotyping for determining the existence and nature of selection pressure on the locus, for examining whether variants affect the features of infection or disease, and for distinguishing causes of reemergent infection after treatment.



Leave a Reply

Your email address will not be published.