Research Article: Climate science curricula in Canadian secondary schools focus on human warming, not scientific consensus, impacts or solutions

Date Published: July 18, 2019

Publisher: Public Library of Science

Author(s): Seth Wynes, Kimberly A. Nicholas, Alex Dickson.


Despite an overwhelming scientific consensus that climate change poses severe risks to human and natural systems, many young Canadian adults do not view it as a major issue. We analyzed secondary science curricula in each province for their coverage of climate change according to six core topics: physical climate mechanisms (“It’s climate”), observed increase in temperature (“It’s warming”), anthropogenic causes of warming (“It’s us”), scientific consensus (“Experts agree”), negative consequences associated with warming (“It’s bad”), and the possibility for avoiding the worst effects (“We can fix it”). We found that learning objectives tend to focus on knowledge of the first three elements, with little or no emphasis on scientific consensus, climate change impacts, or ways to address the issue. The provinces of Saskatchewan and Ontario provide the most comprehensive standards for climate change education, while Nova Scotia and New Brunswick provide the least. We conducted interviews with individuals responsible for curriculum design in six different provinces to understand how curriculum documents are developed and whether political controversies influence the writing process. Interviewees described a process relying on input from professionals, institutions, and members of the public where curriculum developers made decisions independent of political concerns. In some cases, efforts to provide balance may have led to a focus on social controversy, contrary to overwhelming scientific consensus. Curriculum documents are the basis for teacher instruction and textbook content; aligning these documents with the best possible evidence can improve student learning and engage the next generation of Canadians on the critical issue of climate change.

Partial Text

A host of political issues demanding some level of scientific literacy face the present and future citizens of any democratic country. We take scientific literacy to mean “a civic competency required for rational thinking about science in relation to personal, social, political, economic problems, and issues that one is likely to meet throughout life” [1]. Climate change is an example of a global issue with ramifications in the personal, social, political and economic spheres of life.

We found that most Canadian secondary school curricula did not provide full coverage of six core topics associated with increased concern for the issue of climate change. Our analysis of curriculum documents revealed no clear pattern between the politics of a province and their curricular coverage of climate change. This is consistent with the statements provided by curriculum writers who described a curriculum design process that is independent of partisan direction. Textbooks and curriculum documents, however, often contained statements that might cause students to doubt the very robust existing consensus in the scientific community on the human causes of climate change and its negative impacts and risks.

We have seen that in several regards Canadian climate change education is not consistent with scientific understanding. Doubts are cast on scientific consensus in curriculum documents and textbooks, and debate is encouraged on issues that scientists have already settled. Teaching students to evaluate scientific evidence is an important skill, but it is a skill that can be nurtured by debating issues that are still under contention amongst scientists, thereby avoiding a false uncertainty over the existence of anthropogenic climate change. Curriculum documents often focus on knowledge about climate systems (“It’s climate”), missing opportunities to educate students on outcomes that would motivate them to contribute to actual solutions. Still, existing curricula and textbooks provide good models for how climate change can be communicated, and curriculum developers, unencumbered by political interference, will probably continue to improve on climate change education. Although our results are taken from the Canadian educational system, the framework that we have employed could be used to evaluate the breadth of climate change education in other jurisdictions and highlight areas for improving education to reflect the latest science while contributing to societal challenges faced by 21st century citizens.