Research Article: Cognitive and motor dual task gait training exerted specific training effects on dual task gait performance in individuals with Parkinson’s disease: A randomized controlled pilot study

Date Published: June 20, 2019

Publisher: Public Library of Science

Author(s): Yea-Ru Yang, Shih-Jung Cheng, Yu-Ju Lee, Yan-Ci Liu, Ray-Yau Wang, Christine E. King.

http://doi.org/10.1371/journal.pone.0218180

Abstract

Gait impairments in Parkinson’s disease (PD) are aggravated under dual task conditions. Providing effective training to enhance different dual task gait performance is important for PD rehabilitation. This pilot study aimed to investigate the effects of cognitive and motor dual task gait training on dual task gait performance in PD. Eighteen PD participants (n = 6 per training group) were assigned to cognitive dual task gait training (CDTT), motor dual task gait training (MDTT), or general gait training (control) group randomly. The training was 30 min each session, 3 sessions per week for 4 weeks. Primary outcomes including gait performance during cognitive dual task, motor dual task, and single walking were assessed at pre- and post-training. The results showed decreased double support time during cognitive dual task walking after CDTT (-17.1±10.3%) was significantly more than MDTT (6.3±25.6%, p = .006) and control training (-5.6±7.8%, p = .041). Stride time variability during motor dual task walking decreased more after MDTT (-16.3±32.3%) than CDTT (38.6±24.0%, p = .015) and control training (36.8±36.4%, p = .041). CDTT also improved motor dual task walking performance especially on gait speed (13.8±10.71%, p = .046) stride length (10.5±6.6%, p = .046), and double support time (-8.0±2.0%, p = .028). CDTT improved single walking performance as well on gait speed (11.4±5.5%, p = .046), stride length (9.2±4.6%, p = .028), and double support time (-8.1±3.0%, p = .028). In summary, our preliminary data showed 12-session of CDTT decreased double support time during cognitive dual task walking, and MDTT reduced gait variability during motor dual task walking. Different training strategy can be adopted for possibly different training effects in people with PD.

Partial Text

Parkinson’s disease (PD) is a neurological degenerative disease which leads to motor impairments such as functional walking. Dual task walking is one of the functional walking that is essential for daily life. In daily living, it often requires walking while performing simultaneous cognitive or motor task, such as talking with a friend (cognitive dual task walking) or carrying a cup of coffee (motor dual task walking). It has been reported that gait impairments in people with PD are particularly noticeable under dual task conditions included decreased gait speed and stride length and increased stride-to-stride variability[1–4].

There were 29 individuals identified as potential subjects. Of these, 18 participants provided written informed consent for participating this study and were randomly assigned to the CDTT, MDTT, or control group (n = 6 for each group) (Fig 1). There was no significant baseline difference among groups (Table 1), and no change in type or dosage of medication during the study period in every participant. Similarly, there was no significant differences among groups in all outcome measures at the pre-intervention assessment. In addition, no adverse effects such as falls were reported during the training periods.

This pilot randomized controlled trial is the first study to compare the effects of different types of dual task gait training on dual task gait performance in individuals with PD. In the present study, we found CDTT can be more effective to decrease double support time during cognitive dual task walking than MDTT and control exercise. However, the MDTT was more effective in reducing the gait variability than the CDTT and the control exercise in people with PD. Previously, we have demonstrated significant training-specific effects of different dual task gait training in stroke patients [9]. Such training-specific effects is also noted to certain degree in people with PD. In addition, the cognitive dual task training can also improve the motor dual task walking and single walking performance in our participants.

Our preliminary results demonstrated that a 12-session of cognitive dual task gait training decreased double support time during cognitive dual task walking, and motor dual task gait training reduced gait variability during motor dual task walking in people with PD. In addition, the cognitive dual task gait training improved the speed, stride length, and double support time under motor dual task walking and single walking. Different training strategy can be adopted for possibly different training effects in people with PD. As for clinical practice, we recommend implementing cognitive and motor dual task gait training as part of PD rehabilitation for functional walking abilities.

 

Source:

http://doi.org/10.1371/journal.pone.0218180