Research Article: Comparing infiltration rates in soils managed with conventional and alternative farming methods: A meta-analysis

Date Published: September 19, 2019

Publisher: Public Library of Science

Author(s): Andrea D. Basche, Marcia S. DeLonge, Debjani Sihi.


Identifying agricultural practices that enhance water cycling is critical, particularly with increased rainfall variability and greater risks of droughts and floods. Soil infiltration rates offer useful insights to water cycling in farming systems because they affect both yields (through soil water availability) and other ecosystem outcomes (such as pollution and flooding from runoff). For example, conventional agricultural practices that leave soils bare and vulnerable to degradation are believed to limit the capacity of soils to quickly absorb and retain water needed for crop growth. Further, it is widely assumed that farming methods such as no-till and cover crops can improve infiltration rates. Despite interest in the impacts of agricultural practices on infiltration rates, this effect has not been systematically quantified across a range of practices. To evaluate how conventional practices affect infiltration rates relative to select alternative practices (no-till, cover crops, crop rotation, introducing perennials, crop and livestock systems), we performed a meta-analysis that included 89 studies with field trials comparing at least one such alternative practice to conventional management. We found that introducing perennials (grasses, agroforestry, managed forestry) or cover crops led to the largest increases in infiltration rates (mean responses of 59.2 ± 20.9% and 34.8 ± 7.7%, respectively). Also, although the overall effect of no-till was non-significant (5.7 ± 9.7%), the practice led to increases in wetter climates and when combined with residue retention. The effect of crop rotation on infiltration rate was non-significant (18.5 ± 13.2%), and studies evaluating impacts of grazing on croplands indicated that this practice reduced infiltration rates (-21.3 ± 14.9%). Findings suggest that practices promoting ground cover and continuous roots, both of which improve soil structure, were most effective at increasing infiltration rates.

Partial Text

There is a need to develop more resilient, multifunctional agricultural systems, particularly given risks posed by climate change to farm productivity and environmental outcomes [1–3]. Specifically, water-related risks from increased rainfall variability include soil erosion and water pollution, degradation of soil quality, and reductions to crop yields [4–6]. Although soils are vulnerable to water-related risks, they are also being recognized as a medium to mitigate such risk when managed to deliver a wide range of ecosystem benefits, beyond maximizing crop production [7,8]. Thus, designing agricultural systems that improve soils and soil water cycling is one strategy that could help reduce negative impacts of increasing rainfall variability [9–12]. To this point, global modeling analyses indicate that enhancing soil water storage at a large scale can benefit crop productivity and improve ecosystem services, such as by reducing runoff [13,14]. However, there is a need to identify how to secure such outcomes on the farm-scale, particularly across a range of management practices, environments, and climates.

The overall trend quantified by this analysis is the potential for improvements to infiltration rates with various alternative agricultural management practices, with the greatest benefits observed in response to introducing perennials or cover crops. Our findings suggest the importance of the presence of continuous living plant roots and the positive soil transformations that accrue as a result. We found that no-till practices did not consistently increase infiltration rates but were more likely to do so in more humid environments or when combined with residue retention. Another important finding is that some practices have been substantially less studied than others, particularly ones that show some of the greatest promise for facilitating water infiltration such as the use of perennials.