Research Article: Comparison of the bacterial community composition in the granular and the suspended phase of sequencing batch reactors

Date Published: September 5, 2017

Publisher: Springer Berlin Heidelberg

Author(s): Enikö Szabó, Raquel Liébana, Malte Hermansson, Oskar Modin, Frank Persson, Britt-Marie Wilén.


Granulation of activated sludge is an increasingly important area within the field of wastewater treatment. Granulation is usually achieved by high hydraulic selection pressure, which results in the wash-out of slow settling particles. The effect of the harsh wash-out conditions on the granular sludge ecosystem is not yet fully understood, but different bacterial groups may be affected to varying degrees. In this study, we used high-throughput amplicon sequencing to follow the community composition in granular sludge reactors for 12 weeks, both in the granular phase and the suspended phase (effluent). The microbiome of the washed out biomass was similar but not identical to the microbiome of the granular biomass. Certain taxa (e.g. Flavobacterium spp. and Bdellovibrio spp.) had significantly (p < 0.05) higher relative abundance in the granules compared to the effluent. Fluorescence in situ hybridization images indicated that these taxa were mainly located in the interior of granules and therefore protected from erosion. Other taxa (e.g. Meganema sp. and Zooglea sp.) had significantly lower relative abundance in the granules compared to the effluent, and appeared to be mainly located on the surface of granules and therefore subject to erosion. Despite being washed out, these taxa were among the most abundant members of the granular sludge communities and were likely growing fast in the reactors. The ratio between relative abundance in the granular biomass and in the effluent did not predict temporal variation of the taxa in the reactors, but it did appear to predict the spatial location of the taxa in the granules.

Partial Text

Wastewater treatment by aerobic granular sludge is a low-footprint technology that allows effective pollutant removal even at high loading rates (Beun et al. 1999; de Bruin et al. 2004). During granulation, bacterial cells are self-immobilized in an EPS (extracellular polymeric substances) matrix, resulting in a dense, compact structure with an anaerobic/anoxic core and an aerobic outer layer (Beun et al. 2001; de Kreuk et al. 2005).

Based on the dissimilarity matrices and the correlation analyses, it appears that the community composition of the effluent is similar but not identical to the community composition of the granular sludge. By calculating the retention ratios, the similarities and differences could be examined more thoroughly. Some genera became more abundant in the effluent as the experiment progressed. Other genera, on the contrary, were increasingly retained as the flocculated biomass turned into granules.




Leave a Reply

Your email address will not be published.