Research Article: Complete Sequencing of the Mitochondrial Genome of Opisthorchis felineus, Causative Agent of Opisthorchiasis

Date Published: April , 2009

Publisher: A.I. Gordeyev

Author(s): V.A. Mordvinov, А.V. Mardanov, N.V. Ravin, S.V. Shekhovtsov, S.А. Demakov, А.V. Katokhin, N.А. Kolchanov, K.G. Skryabin.



Opisthorchis felineus, a hepatic trematode, is the causative agent of opisthorchiasis, a dangerous disease in both human beings and animals. Opisthorchiasis is widespread in Russia, especially Western Siberia. The purpose of the present study was to determine the complete mitochondrial DNA sequence of this flatworm. Two parallel methods were employed: (1) capillary electrophoresis to sequence the mitochondrial genome fragments obtained through specific PCR amplification, and (2) high throughput sequencing of the DNA sample. Both methods made possible the determination of the complete nucleotide sequence of the O. felineus mitochondrial genome. The genome consists of a ring molecule 14,277 nt in length that contains 35 genes coding 2 rRNA, 22 tRNA, and 12 proteins: 3 subunits of cytochrome-C-oxidase, 7 subunits of NADH-dehydrogenase, B apocytochrome, and subunit 6 of ATP-synthetase.

Partial Text

The flatworm Opisthorchis felineus (class: Trematoda, family: Opisthorchiidae) is a parasitic liver fluke in both human beings and animals. An estimated 2 million people worldwide are infected with opisthorchiasis, most of them in Russia and countries of the former Soviet block, such as Ukraine, Belarus and Kazakhstan [1, 2]. Within some of the northern settlements in these regions, up to 90% of the population is infected with opisthorchiasis [1].

This review contains the results of the complete sequencing of the O. felineus flatworm mtDNA obtained using two methods. The first method involved the amplification and sequencing of the mtDNA using capillary electrophoresis. Parallel high throughput sequencing of the animal genome DNA sample is performed without any preliminary enrichment with the mtDNA sequences. This enables the complete de-novo sequencing of the mitochondrial genome. The high throughput sequencing method using the GS FLX genome analyzer may be used for the rapid decoding of animal mitochondrial genomes and for the identification of polymorphisms. The newly generated data on the nucleotide sequence of the O. felineus mitochondrial genome may be utilized in the development of specific molecular diagnostic methods for opisthorchiasis.

The work was supported by the program “Genomics, Proteomics, and Bioinformatics” of the Institute of Cytology and Genetics, Russian Academy of Sciences, and by the Federal Agency for Science and Innovations (project no. 02.552.11.7045) of the Bioengineering Center, Russian Academy of Sciences. We would like to thank N.I. Yurlova and K.P. Fedorov, members of the Institute of Systematic and Ecology of Animals, Russian Academy of Sciences, for assistance in the identification of O. felineus.