Research Article: Cultivation-independent methods applied to the microbial prospection of oil and gas in soil from a sedimentary basin in Brazil

Date Published: October 22, 2011

Publisher: Springer

Author(s): Paula B Miqueletto, Fernando D Andreote, Armando CF Dias, Justo C Ferreira, Eugênio V dos Santos Neto, Valéria M de Oliveira.

http://doi.org/10.1186/2191-0855-1-35

Abstract

The upper parts of oil field structures may leak gas which is supposed to be indirectly detected by the soil bacterial populations. Such microorganisms are capable of consuming this gas, supporting the Microbial Prospection of Oil and Gas (MPOG) methodology. The goal of the present work was to characterize microbial communities involved in short-chain alkane metabolism, namely methane, ethane and propane, in samples from a petroliferous (P) soil through clone libraries of the 16S rRNA gene of the Domains Bacteria and Archaea and the catabolic gene coding for the soluble di-iron monooxygenase (SDIMO) enzyme alpha subunit. The microbial community presented high abundance of the bacterial phylum Actinobacteria, which represented 53% of total clones, and the Crenarchaeota group I.1b from the Archaea Domain. The analysis of the catabolic genes revealed the occurrence of seven Operational Protein Families (OPF) and higher richness (Chao = 7; Ace = 7.5) and diversity (Shannon = 1.09) in P soil when compared with a non-petroliferous (Np) soil (Chao = 2; Ace = 0, Shannon = 0.44). Clones related to the ethene monooxygenase (EtnC) and methane monooxygenase (MmoX) coding genes occurred only in P soil, which also presented higher levels of methane and lower levels of ethane and propane, revealed by short-chain hydrocarbon measures. Real-time PCR results suggested that the SDIMO genes occur in very low abundance in the soil samples under study. Further investigations on SDIMOs genes in natural environments are necessary to unravel their still uncharted diversity and to provide reliable tools for the prospection of degrading populations.

Partial Text

Surface geochemical petroleum exploration is defined as the search for migrated surface hydrocarbons and their alteration products, including changes in vegetation and microbial populations [Hitzman et al. 2009; Rashed et al. 2008; Davis and Updegraff 1954; Schumacher 2000]. Microbes play a profound role on the oxidation of migrating hydrocarbons, and are directly responsible for many surface manifestations of petroleum seepage. In this context, the Microbial Prospection for Oil and Gas (MPOG), developed in Germany and used as a stand-alone technique for detecting microseepages since 1961, is based on the knowledge that oil and gas fields emit a continuous stream of light-hydrocarbon gases towards the Earth’s surface [Schumacher 2000; Wagner et al. 2002; Tucker and Hitzman 1996].

Prokaryotic community diversity and abundance were investigated in a soil sample originated from a sedimentary basin by means of 16S rRNA and catabolic gene libraries in combination with real-time PCR. Results revealed the outstanding high abundance of the phylum Actinobacteria in the bacterial community, especially the order Actinomycetales, an important group inhabiting the soil environment that encompasses the genera from the CRNM complex, known for its hydrocarbon degradation skills [Shennan 2006].

The authors declare that they have no competing interests.

 

Source:

http://doi.org/10.1186/2191-0855-1-35

 

Leave a Reply

Your email address will not be published.