Research Article: Diarrheal bacterial pathogens and multi-resistant enterobacteria in the Choqueyapu River in La Paz, Bolivia

Date Published: January 14, 2019

Publisher: Public Library of Science

Author(s): Jessica Guzman-Otazo, Lucia Gonzales-Siles, Violeta Poma, Johan Bengtsson-Palme, Kaisa Thorell, Carl-Fredrik Flach, Volga Iñiguez, Åsa Sjöling, Jesse Goodman.

http://doi.org/10.1371/journal.pone.0210735

Abstract

Water borne diarrheal pathogens might accumulate in river water and cause contamination of drinking and irrigation water. The La Paz River basin, including the Choqueyapu River, flows through La Paz city in Bolivia where it is receiving sewage, and residues from inhabitants, hospitals, and industry. Using quantitative real-time PCR (qPCR), we determined the quantity and occurrence of diarrheagenic Escherichia coli (DEC), Salmonella enterica, Klebsiella pneumoniae, Shigella spp. and total enterobacteria in river water, downstream agricultural soil, and irrigated crops, during one year of sampling. The most abundant and frequently detected genes were gapA and eltB, indicating presence of enterobacteria and enterotoxigenic E. coli (ETEC) carrying the heat labile toxin, respectively. Pathogen levels in the samples were significantly positively associated with high water conductivity and low water temperature. In addition, a set of bacterial isolates from water, soil and crops were analyzed by PCR for presence of the genes blaCTX-M, blaKPC,blaNDM, blaVIM and blaOXA-48. Four isolates were found to be positive for blaCTX-M genes and whole genome sequencing identified them as E. coli and one Enterobacter cloacae. The E. coli isolates belonged to the emerging, globally disseminated, multi-resistant E. coli lineages ST648, ST410 and ST162. The results indicate not only a high potential risk of transmission of diarrheal diseases by the consumption of contaminated water and vegetables but also the possibility of antibiotic resistance transfer from the environment to the community.

Partial Text

Diarrheal diseases are a major cause of morbidity and mortality worldwide with particular impact on children [1, 2]. In Bolivia, recent estimates suggest that 21% of children under 5 years of age suffer from acute diarrhea at least once a year [3], and that acute diarrhea is responsible for approximately 15% of the annual total number of deaths in Bolivian children less than 5 years old, entailing a very high cost for health systems and involved families [4].

Water samples from different sites along the La Paz River basin were analyzed in order to detect and quantify the amount of diarrheal bacterial pathogens, in relation to physical and chemical parameters and seasonal variation. A positive linear association was found between conductivity and DNA concentration. A similar association was observed between conductivity and increasing numbers of enterobacteria, pathogenic E. coli (ETEC, EPEC, EHEC, EAEC, EIEC), K. pneumoniae and Shigella spp. At the same time, a negative linear association between water temperature and increasing numbers of enterobacteria and ETEC was observed. Electrical conductivity (EC) measures the quantity of ionic salts dissolved in water, so changes in chemical composition of water bodies determine the variation in conductivity [31, 32]. On the other hand, EC can be used as a total dissolved solids (TDS) indicator [33]. The finding of a positive linear relation between EC and DNA concentration and number of pathogenic bacteria might indicate that dissolved particles, including bacteria, contribute to higher conductivity in water. Many approaches use EC as an indicator of chemical quality in natural and drinking water, where higher conductivity values are generally associated with higher amount of metals and other pollutants [31, 34–36]. Other studies have used EC as an indicator of bacterial presence in water. Galfi et al. [37] observed in storm-water and snowmelt from urban catchments in a Swedish city that temperature and pH were positively associated with the presence of total coliforms, E. coli and Enterococci but conductivity was shown to be negatively associated, presumptively due to salinity stress on bacterial survival. On the other hand, Lyew and Sheppard [38] reported an increase in EC in fed-batch columns due to the raise of metabolic activity in bacteria and the generation of charged metabolites. Overall, EC can be used as an indicator of contamination and bacterial presence in watersheds. However, the specific association is influenced by many other factors such as the geologic composition in the area, presence of substrates, bacterial species and other physical-chemical characteristics. In a preceding study, using the same samples Poma et al. [10] found that microbiological, physical and chemical parameters differ between impacted and un-impacted sites of sampling in the La Paz River basin. Using Principal Component Analysis (PCA), SP2, SP3 and SP4 clustered together and far from SP1, where the first two components including thermotolerant coliforms, conductivity, redox potential and pH accounted for approximately 98% of the observed variation.

 

Source:

http://doi.org/10.1371/journal.pone.0210735

 

Leave a Reply

Your email address will not be published.