Research Article: Disordered Microbial Communities in Asthmatic Airways

Date Published: January 5, 2010

Publisher: Public Library of Science

Author(s): Markus Hilty, Conor Burke, Helder Pedro, Paul Cardenas, Andy Bush, Cara Bossley, Jane Davies, Aaron Ervine, Len Poulter, Lior Pachter, Miriam F. Moffatt, William O. C. Cookson, Olivier Neyrolles. http://doi.org/10.1371/journal.pone.0008578

Abstract: A rich microbial environment in infancy protects against asthma [1], [2] and infections precipitate asthma exacerbations [3]. We compared the airway microbiota at three levels in adult patients with asthma, the related condition of COPD, and controls. We also studied bronchial lavage from asthmatic children and controls.

Partial Text: Asthma is a heterogeneous syndrome of intermittent wheeze and airway inflammation that affects 300 million individuals worldwide. Although its causes are unknown, many studies suggest a role for microbiota in its aetiology [4]. Viral infections are important inducers of seasonal exacerbations of asthma [5], but there is circumstantial evidence that bacterial infections may also play a role. Asymptomatic neonates whose throats are colonized with Streptococcus pneumoniae, Haemophilus influenzae, or Moraxella catarrhalis are at increased risk for recurrent wheeze and asthma early in life [6]. These same bacteria have consistently been associated with exacerbations of both asthma [7] and chronic obstructive pulmonary disease (COPD) [8]. The response of asthmatics to antibiotics also suggests the importance of acute and chronic bacterial infections in the pathogenesis of disease [9]. Epidemiological research has consistently indicated that a rich microbial environment in early life confers protection against the development of asthma [1], suggesting the need to understand the extent and nature of normal airway flora.

Twenty-four adult subjects were studied, including 5 patients with COPD, 11 patients with asthma and 8 control subjects with no previous history of asthma or COPD and an FEV1≥95% predicted (Table 1). Sterile dry cotton-headed swabs were used to sample from the nose and the oropharynx (OP) of all subjects (n = 24), and bronchoscopy via the nasal route was used to obtain duplicate cytology brushings within the left upper (LUL) in 23 subjects. All subjects were free of clinical infection at the time of the study.

Our results challenge the traditional medical teaching that the lower airways are sterile, and suggest that bronchial tree contains a characteristic microbial flora that differs between health and disease. The concept of sterility comes from an age with limited experimental access to healthy airways and was based on 120 year old culture techniques which are now recognised to detect a small percentage of the bacteria present in complex samples [13]. Indeed, the major colonists in our control subjects were anaerobes such as Prevotella spp., which can only be grown with difficulty in culture. Microbiota are ubiquitous even in the most hostile environments, and it would be extraordinary if the lower airway able to maintain sterility in the presence of high volume airflow through a damp open communication with the oropharynx.

Approval for the adult study was given by the Connolly Hospital Ethics Committee, and full informed consent was obtained from each patient in writing. Approval for the study of the pediatric patients was given Royal Brompton Hospital Ethics Committee, and written informed consent from parents and age-appropriate assent from children was obtained in each case.

Source:

http://doi.org/10.1371/journal.pone.0008578

 

0 0 vote
Article Rating
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments