Research Article: Efficacy of using a 3D printed lumbosacral spine phantom in improving trainee proficiency and confidence in CT-guided spine procedures

Date Published: October 10, 2018

Publisher: Springer International Publishing

Author(s): Yi Li, Zhixi Li, Simon Ammanuel, Derrick Gillan, Vinil Shah.

http://doi.org/10.1186/s41205-018-0031-x

Abstract

Minimally-invasive spine procedures provide targeted, individualized diagnosis and pain management for patients. Competence in these procedures is acquired through experience and training. We created a 3D printed model of a degenerative lumbosacral spine with scoliosis and spondylosis, using materials that mimic bone and soft tissue density under CT. In this study, we evaluate the efficacy of using such a spine model to improve novice trainee confidence and proficiency in performing CT-guided facet joint injections.

Thirteen medical students with no prior exposure to CT-guided spine procedures were divided into two groups. Both groups received an introductory didactic lecture, as well as identical pre- and post- test assessments. The Training group (7 students) received two separate training sessions using the simulation model. The Control group (6 students) received only one training session. The Training group demonstrated significantly fewer needle readjustments during the second simulation session, compared with the first session (p = 0.005). Both groups demonstrated significant increase in confidence in ability to perform CT-guided spine procedures on the post-test (p = 0.004 for the Control group and p = 0.00001 for the Training group).

A 3D printed lumbosacral spine phantom with realistic spondylosis can be made to facilitate novice training in minimally-invasive spine procedures. Training using a realistic lumbosacral spine model helps novices acquire the skills and confidence to perform CT-guided spine procedures.

Partial Text

Minimally-invasive computed tomography (CT)- or fluoroscopically-guided spine procedures are commonly performed in radiology departments to provide targeted, individualized diagnosis and pain management for patients [1, 2]. Imaging guidance with CT or fluoroscopy allows for direct visualization of needle trajectory and eventual needle endpoint.

Minimally-invasive CT-guided spine procedures are commonly performed in radiology departments to provide targeted, individualized diagnostic testing and pain management to patients. The ability for novice trainees to learn and practice these procedures on a phantom model would limit intra-procedural risk and radiation dose to patients. To the best of our knowledge, no study to date has evaluated the efficacy of using a realistic 3D printed lumbar spine phantom to train novice practitioners on the performance of CT-guided procedures. The results of our study indicate that a training curriculum using such a phantom model would increase confidence and proficiency in performing CT-guided spine procedures.

The results of this study indicate that training with a realistic 3D printed lumbosacral spine model helps novice trainees to acquire the technical proficiency and confidence to perform CT-guided minimally-invasive spine procedures.

 

Source:

http://doi.org/10.1186/s41205-018-0031-x

 

Leave a Reply

Your email address will not be published.