Research Article: Electrical Impedance Tomography of Electrolysis

Date Published: June 3, 2015

Publisher: Public Library of Science

Author(s): Arie Meir, Boris Rubinsky, Yingchun Zhang.


The primary goal of this study is to explore the hypothesis that changes in pH during electrolysis can be detected with Electrical Impedance Tomography (EIT). The study has relevance to real time control of minimally invasive surgery with electrolytic ablation. To investigate the hypothesis, we compare EIT reconstructed images to optical images acquired using pH-sensitive dyes embedded in a physiological saline agar gel phantom treated with electrolysis. We further demonstrate the biological relevance of our work using a bacterial E.Coli model, grown on the phantom. The results demonstrate the ability of EIT to image pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E.coli model. The results are promising, and invite further experimental explorations.

Partial Text

Tissue ablation with minimally invasive surgery is important for treatment of many diseases and has an increasing role in treatment of solid neoplasms. A variety of biophysical and biochemical processes are used for this purpose. They include thermal ablation with heating, cooling or freezing, electroporation, injection of chemical agents, photodynamic effects, sonoporation effects and many others. Electrolysis, the passage of a low magnitude direct ionic current through the tissue, between two electrodes, is a biochemical/biophysical process that has been considered for tissue ablation since the 19th century [1]. Electrolysis affects the ionic species in tissue, which change into compounds that can ablate cells. The advantage of electrolysis in comparison to other ablation techniques can be attributed to its simplicity and low cost of instrumentation, which might make it a suitable treatment modality for resource constrained communities where more expensive medical treatment is often not available [2].