Research Article: Evaluation of the Finis Swimsense® and the Garmin Swim™ activity monitors for swimming performance and stroke kinematics analysis

Date Published: February 8, 2017

Publisher: Public Library of Science

Author(s): Robert Mooney, Leo R. Quinlan, Gavin Corley, Alan Godfrey, Conor Osborough, Gearóid ÓLaighin, Tiago M Barbosa.

http://doi.org/10.1371/journal.pone.0170902

Abstract

The study aims were to evaluate the validity of two commercially available swimming activity monitors for quantifying temporal and kinematic swimming variables.

Ten national level swimmers (5 male, 5 female; 15.3±1.3years; 164.8±12.9cm; 62.4±11.1kg; 425±66 FINA points) completed a set protocol comprising 1,500m of swimming involving all four competitive swimming strokes. Swimmers wore the Finis Swimsense and the Garmin Swim activity monitors throughout. The devices automatically identified stroke type, swim distance, lap time, stroke count, stroke rate, stroke length and average speed. Video recordings were also obtained and used as a criterion measure to evaluate performance.

A significant positive correlation was found between the monitors and video for the identification of each of the four swim strokes (Garmin: X2 (3) = 31.292, p<0.05; Finis:X2 (3) = 33.004, p<0.05). No significant differences were found for swim distance measurements. Swimming laps performed in the middle of a swimming interval showed no significant difference from the criterion (Garmin: bias -0.065, 95% confidence intervals -3.828–6.920; Finis bias -0.02, 95% confidence intervals -3.095–3.142). However laps performed at the beginning and end of an interval were not as accurately timed. Additionally, a statistical difference was found for stroke count measurements in all but two occasions (p<0.05). These differences affect the accuracy of stroke rate, stroke length and average speed scores reported by the monitors, as all of these are derived from lap times and stroke counts. Both monitors were found to operate with a relatively similar performance level and appear suited for recreational use. However, issues with feature detection accuracy may be related to individual variances in stroke technique. It is reasonable to expect that this level of error would increase when the devices are used by recreational swimmers rather than elite swimmers. Further development to improve accuracy of feature detection algorithms, specifically for lap time and stroke count, would also increase their suitability within competitive settings.

Partial Text

Swimming ranks amongst the most popular leisure activities worldwide [1,2]. The general health benefits of regular swimming are well established and swimming is one of the few sports that can be enjoyed during all stages of life [3]. Individuals who swim as a recreational activity for health and fitness can benefit from monitoring some basic indices of their performance. Parameters may include the time or distance completed; in much the same fashion as a recreational runner will use a stopwatch or GPS device. Indeed, research evidence suggests that better health outcomes can arise when levels of physical activity are quantified [4].

Table 1 compares the sensitivity and specificity of the stroke type identification function for both activity monitors. The Garmin Swim correctly identified which of the four competitive swimming strokes was performed for a given lap with 95.4% overall sensitivity rate whilst the Finis Swimsense was slightly more sensitive at 96.4% overall. It was also found that there was a significant correlation in stroke type identification between the activity monitors and video for each of the four strokes (Garmin: X2 (3) = 31.292, p<0.05; Finis: X2 (3) = 33.004, p<0.05). Taking each stroke in isolation, a sensitivity of 94% or greater was achieved in all but two cases; namely breaststroke when recorded with the Garmin (86.0%) and backstroke when recorded by the Finis monitor (88.9%). This is also reflected in the slightly lower specificity values for these two strokes. The aim of this study was to assess the accuracy of the Finis Swimsense and the Garmin Swim activity monitors and to assess the validity of using these devices in recreational settings. It is well established that the pattern of hand movement during swimming shows considerable variances owing to various factors including anthropometrics, skill level and fatigue [20–22]. With recreational swimmers, there can be a very wide variation in skill level and fatigue, with consequent high levels of variation in swim performance in this group of swimmers. Conversely, competitive athletes display more consistent patterns of movement [23] and thus these athletes were used for our testing in order to minimize variation in swimming performance. Thus the results obtained in this study would represent expected best case findings for these devices and it would be reasonable to expect that there would be a significant deterioration in the activity monitors’ performance when used by recreational swimmers. This is the first study to assess the accuracy of two commercially available swimming activity monitors; the Finis Swimsense and Garmin Swim. Both monitors were found to operate with a relatively similar performance level. However, as previously noted, with recreational swimmers there can be a very wide variation in skill level and fatigue, with consequent high levels of variation in swim performance in this group of swimmers. Conversely, competitive athletes display more consistent patterns of movement [23] and thus the results obtained in this study would represent expected best case findings for these devices and it would be reasonable to expect that there would be a significant deterioration in the activity monitors’ performance when used by recreational swimmers.   Source: http://doi.org/10.1371/journal.pone.0170902