Research Article: Evasion of adaptive immunity by HIV through the action of host APOBEC3G/F enzymes

Date Published: September 12, 2017

Publisher: BioMed Central

Author(s): Michael Grant, Mani Larijani.

http://doi.org/10.1186/s12981-017-0173-8

Abstract

APOBEC3G (A3G) and APOBEC3F (A3F) are DNA-mutating enzymes expressed in T cells, dendritic cells and macrophages. A3G/F have been considered innate immune host factors, based on reports that they lethally mutate the HIV genome in vitro. In vivo, A3G/F effectiveness is limited by viral proteins, entrapment in inactive complexes and filtration of mutations during viral life cycle. We hypothesized that the impact of sub-lethal A3G/F action could extend beyond the realm of innate immunity confined to the cytoplasm of infected cells. We measured recognition of wild type and A3G/F-mutated epitopes by cytotoxic T lymphocytes (CTL) from HIV-infected individuals and found that A3G/F-induced mutations overwhelmingly diminished CTL recognition of HIV peptides, in a human histocompatibility-linked leukocyte antigen (HLA)-dependent manner. Furthermore, we found corresponding enrichment of A3G/F-favored motifs in CTL epitope-encoding sequences within the HIV genome. These findings illustrate that A3G/F‐mediated mutations mediate immune evasion by HIV in vivo. Therefore, we suggest that vaccine strategies target T cell or antibody epitopes that are not poised for mutation into escape variants by A3G/F action.

Partial Text

 

Source:

http://doi.org/10.1186/s12981-017-0173-8

 

Leave a Reply

Your email address will not be published.