Research Article: Evolution of nodule stiffness might predict response to local ablative therapy: A series of patients with hepatocellular carcinoma

Date Published: February 14, 2018

Publisher: Public Library of Science

Author(s): Michael Praktiknjo, Viktoria Krabbe, Alessandra Pohlmann, Matthias Sampels, Christian Jansen, Carsten Meyer, Christian P. Strassburg, Jonel Trebicka, Maria A. Gonzalez Carmona, Pavel Strnad.


Early information on treatment response of HCC to local ablative therapy is crucial. Elastography as a non-invasive method has recently been shown to play a potential role in distinguishing between benign and malignant liver lesions. Elastography of hepatocellular carcinoma (HCC) in early response to local ablative therapy has not been studied to date.

We prospectively included a cohort of 14 patients with diagnosis of HCC who were treated with local ablative therapy (transarterial chemoembolization, TACE and/or radiofrequency ablation, RFA). We used 2D shear-wave elastography (RT 2D-SWE) to examine stiffness of HCC lesion before and 3, 30 and 90 days after local ablative therapy. Contrast-enhanced imaging after 90 days was performed to evaluate treatment response. Primary endpoint was stiffness of HCC in response to local ablative therapy. Secondary end point was tumor recurrence.

Stiffness of HCC nodules and liver showed no significant difference prior to local ablative therapy. As early as three days after treatment, stiffness of responding HCC was significantly higher compared to non-responding. Higher stiffness before treatment was significantly associated with tumor recurrence.

Nodule stiffness in general and RT 2D-SWE in particular could provide a useful tool for early prediction of HCC response to local ablative therapy.

Partial Text

In recent years, liver stiffness assessed by different elastography techniques (transient, shear wave, magnetic resonance, etc.) has become a standard tool for non-invasive staging of liver fibrosis and detection of clinically significant portal hypertension in patients with chronic liver disease [1–3]. Patients with chronic liver disease regularly show hepatic nodules with an increased risk of malignant transformation to hepatocellular carcinoma (HCC) [4,5]. While contrast-enhanced imaging is the first-line approach in the diagnosis of HCC, recent reports show that the non-invasively measured stiffness of hepatic nodules could help to distinguish between malignant and benign liver lesions. Interestingly, the higher the stiffness of a lesion, the higher the probability of malignancy [6–8]. The treatment of HCC depends on the stage of liver disease and in many cases, curative resection is not possible. Therefore, local ablative therapies, such as transarterial chemoembolization (TACE) and radiofrequency ablation (RFA), are considered viable therapeutic options [4]. However, HCC might behave very differently and could show more or less of a response to local ablative treatment [9]. Furthermore after treatment, recurrence of HCC, other than the target lesions (non-target lesions, Non-TL) is crucial for patient outcome and therapeutic strategy [10]. This prospective study investigated for the first time whether magnitude and development of nodule stiffness assessed by real-time two-dimensional shear wave elastography (RT 2D-SWE) is associated with response of HCC to local ablative therapy and occurrence of Non-TL.

This study provides first data of non-invasively measured HCC stiffness in response and outcome to local ablative therapy. We not only demonstrate that stiffness before treatment might distinguish patients at risk of developing Non-TL but also show that an increase in stiffness as early as three days after therapy could be useful in predicting outcome of local ablative therapy according to RECIST criteria.




0 0 vote
Article Rating
Notify of
Inline Feedbacks
View all comments